• Тенденции развития средств вычислительной техники. Современные тенденции развития радиопередающей техники

    03.04.2023

    В прошедшем столетии были сделаны многие открытия и изобретения, сыгравшие революционную роль в развитии современной цивилизации.

      создание и развитие средств связи, особенно беспроводной.

      Изобретение кинематографа.

      Возникновение и развитие авиации и космической техники. Современные летательные аппараты по своим техническим и конструктивным характеристикам не сопоставимы с первыми летательными аппаратами.

      Но наиболее разительный прогресс произошел в области вычислительной техники. (ок 50 лет назад первые ЭВМ имели вез ок. 30 тонн, площадь ок. 200м 2)

    время выполнения вычислений измерялось часами или сутками.

    Теперь ЭВМ можно разместить на кремниевом кристалле S=5мм 2 , время выполнения расчетов – микросекунды, стоят мало.

    При этом в отличие от 1ых ЭВМ, которые программируют в математических кодах и способны были выполнять главным образом только громоздкие математические вычисления, то современные ЭВМ способны доказывать теоремы, переводить текст, воспроизводить движущиеся объекты.

    Появление первой машины для выполнения четырех арифметических действий дотируется началом 17 в. (1623 г В. Шикард изобрел мех. машину сложения, вычитания, частично умножения и деления), но более известным оказался настольный арифмометр (1642г.) франц. ученым Паскалем. 1671г. Лейбниц изобрел т.н. зубчатое колесо Лейбница, позволяющее выполнять 4 арифметические операции.

    В 19 в. обострилась потребность в выполнении вычислении, связанных с обработкой результатов астрономических наблюдений, расчеты, связанные с составление математических таблиц. Поэтому в 1823 англ. математик Чарльз Бэббидж начал разрабатывать автоматизированную разностную машину, приводимую в действие паровым двигателем.

    Машина должна была вычислять значения полиномов и печатать результаты на негативе для фотопечати, однако существующее в то время технические средства не дали возможности завершить воплощение этой идеи, а кроме того, сам Бэббидж увлекся проектированием более мощной счетной машины. Новая счетная машина Бэббиджа получила название «аналитическая».

    1894 г. он изложил ее основные принципы, которые были воплощены в ткацком станке программы с перфокарточным управлением француза Жаккаром.

    Аналитическая машина явилась одной из первых программируемых автоматических вычислительных машин с последовательным управлением. Она имела арифметическое устройство и память.

    Меценат проекта была графиня Ада Августа Лавлейс – первый женщина программист. В честь ее назван язык программирования «Ада».

    В конце 19 в. Холлерит разработал машину с перфокарточным вводом, способную автоматически классифицировать и составлять таблицу данных. Она была использована в 1890 г. в Америке на ней проведены переписи населения. Программа считывалась с перфокарты с помощью электроконтактных щеток. В качестве цифровых счетчиков – эм реле.

    1896 г. Хоррелит основал фирму, предшественницу IBM.

    После смерти Бэббиджа заметно прогрессов не было.

    скорость вычисление механич. или элетромех. машин была ограничена, поэтому в 30хх гг. 20 в началась разработка электронных вычислительных машин (ЭВМ). На основе вакуумных 3х электродных лампах (триодах), которые изобрел в 1906 Лид Фрест.

    Первая универсальная ЭВМ «Эниак» была разработана в пенсильваском институте США (1940-1946 г.) – разработка численных таблиц для вычисления траектории полета объектов. (18 тыс. электронных плат, 140 кВт, 10ая СС, программировалась вручную с помощью переключателей.

    Современные тенденции развития средств вычислительной техники.

    В настоящее врем в мире происходит переход от индустриального общества к информационному. Если главным содержанием индустриального общества было производство и потребление мат. благ, то движущей силой информационного общества является создание и потребление информационных ресурсов различного типа и назначения. При этом достижение экономических и социальных результатов определяется не сколько и не столько наличием мат.-энергетических ресурсов, сколько масштабом и темпами информатизации общества и широким использованием информационных технологий во всех сферах человеческой деятельности.

    Независимость от различия и особенностей процессов информации в различных областях общественной жизни для них характерно наличие 3х составляющих:

      идентичность (единообразие) основных средств производства (средства выч. техники и информатики)

      идентичность «сырья» (исходные данные, подлежащие анализу и обработке)

      Идентичность выпускаемой продукции («обработанная» информация)

    Ключевая роль в инфраструктуре информации принадлежит системным телекоммуникациям, а также выч. системам и их сетям.

    В этих областях сосредоточены новейшие средства выч. техники, информатики и связи, а также используются наиболее прогрессивные информационные технологии.

    В прошедшей истории развития ЭВТехники (начавшиеся с 40х гг 20в) можно выделить 4 поколения ЭВМ, отличающихся между собой элементной базой, функционально логической организацией, конструктивно-тех. исполнением, программным обеспечением, тех и эксплуатационным характеристиками режимами пользования.

    Смене поколений сопутствовала изменение тех-эксплуатацион и тех-

    экономических показателей ЭВМ.

    В первую очередь это:

    быстродействие, емкость памяти, надежность, стоимость.

    Одновременно этому сопутствовала тенденция совершенствования программного обеспечения и повышение эффективности использования и обращения к ней.

    В настоящее время ведутся работы над создание ЭВМ 5ого поколения, которые приблизили реальность создание искина.

    Классификация средств эвТехники

    К настоящему времени в мире уже произведенные работают и вновь создаются миллионы ЭВМ различного типа, класса и уровня.

    ЭВТ принято делить на аналоговую и цифровую.

    В АВМ информация представляется соответствующими значениями тех или иных аналогов (непрерывных физ. величин) – тока, напряжения, угла поворота и т.д.

    АВМ обеспечивают приемлемое быстродействие, но умеренную точность вычислений ок. 10 -2 -10 -3

    АВМ имеют достаточно ограниченное распространение и применяются главным образом в НИИ и проектно-конструкторских организациях при разработке исследований и совершенстве след. образцов техники, т.е. АВМ относятся к области специализируемых ЭВМ.

    Более широкое распространение получили ЦВМ, в которых информация отображается с помощью цифровых или бинарных кодов.

    Быстрые темпы развития и смены моделей ЦВМ затрудняют использование какой-либо их стандартной классификации.

    Академик Глужков отмечал, что можно выделить 3 глобальных сферы, требующие использования качественно различных типов ЭВМ, а и.:

      традиционное применение ЭВМ для автоматизированных вычислений

      использование ЭВМ в различных системах управления (с 60х гг - сфера в наибольшей степени предполагает использование линии ЭВМ)

    Машины этого профиля должны отвечать след. требованиям:

      более дешевыми по сравнению с большими централизованными ЭВМ.

      более надежными, особенно при работе непосредственно в контуре управления.

      обладать большей гибкостью и адаптивностью к условиями работы

      было архитектурно прозрачным, т.е. структура и функции ЭВМ должны быть понятны широкому пользователю.

    3. Для решения задач искусственного интеллекта.

    Рынок ЭВМ имеет широкий диапазон классов и моделей ЭВМ. Например, IBM, выпускающий приблизительно 80% мирового машинного парка производит главным образом 4 класса компьютеров:

      большие ЭВМ (mainframe ) – многопользовательские машины с централизованной обработкой информацию и различными формами удаленного доступа. По оценкам специалистов IBM ок. 50% всего объема данных в информационных системах мира должны хранится в больших машинах. Новое их поколение предназначено для использования в сетях в качестве крупных серверов.

    Развитие ЭВМ данного класса имеет большое значение и для РФ, т.к. у нас имеется огромный задел по программе ЕС ЭВМ, заимствовавших архитектуру IBM 360 / 310 , поэтому принято решение продолжить развитие этого направления и в 1993 г. с IBM было подписано соглашение, согласно которому РФ получила право производить 23 вида новейших моделей – аналогов IBM с производительностью от 1,5 до 167 миллионов операций в сек.

      Машины RS / 6000 , у которых высокая производительность и предназначены для построения работы станций, для работы с графикой, для UNIX серверов и кластерных комплексов для научных исследований.

      Средние ЭВМ в первую очередь для работы в финансовых структурах (бизнес компьютеры). В них особенное внимание уделяется сохранению и безопасности данных, также программной совместимости. Эти машины используются в качестве серверов локальных сетей.

      Компьютеры на платформе микропроцессоров Intel

      Вычислительные системы, использующие параллельную работу.

    Можно использовать след. классификацию средств ЭВМ на основе их разделения по быстроте действия :

      супер ЭВМ , для решения сложных вычислительных задач и для обслуживания крупнейших информационных банков данных

      большие ЭВМ , для ведомств, территориальных и региональных вычислительных центров.

      средние ЭВМ , для АСУТП (АСУ технологического процесса) и АСУП (производства), а также для управления распределенной обработкой информации в качестве серверов.

      персональные и профессиональные ЭВМ на их базе формируются АРМ (автоматизированные рабочие места) для специалистов различного профиля.

      встраиваемые микропроцессоры (микро ЭВМ) для автоматизированного управления отдельными устройствами и механизмами.

    РФ испытывает потребность:

    Супер ЭВМ ~ 100-200 шт.

    Большие ЭВМ ~ 1000 шт.

    Средние ЭВМ ~ 10 4 -10 5 шт

    Направления развития компьютерной техники .( тенденции)

    На данный момент активно ведутся разработки молекулярных устройств, оптических и квантовых компьютеров, а также ДНК-компьютеров.

    В основе молекулярных компьютеров лежат бистабильные молекулы, которые могут находится в двух устойчивых термодинамических состояниях. Каждое такое состояние характеризуется своими химическими и физическими свойствами. Переводить молекулы из одного состояния в другое можно с помощью света, тепла, химических агентов, электрических и магнитных полей. По сути, эти молекулы являются транзисторами размером в несколько нанометров.

    Благодаря малым размерам бистабильных молекул можно увеличить количество элементов на единицу площади. Другим достоинством молекул является малое время отклика, которое составляет порядка 10 -15 с. Соединяют функциональные элементы нанотрубки или сопряженные полимеры.

    Другой тип компьютеров нового поколения также основан на молекулах, но уже молекулах ДНК . Впервые ДНК–вычисления были проведены в 1994 г. Леонардом Эдлеманом, профессором Университета Южной Калифорнии, для решения задачи торгового агента. В ДНК-компьютерах роль логических вентилей играют подборки цепочек ДНК, которые образуют друг с другом прочные соединения. Для наблюдения состояния всей системы в последовательность внедрялись флуоресцирующие молекулы. При определенных сочетаниях свечения молекул подавляли друг друга, что соответствовало нулю в двоичной системе. Единице же соответствовало усиленное свечение флюоресцентов. Возможно строить последовательности цепочек, в которых выходной сигнал одной цепочки служит входным сигналом другой.

    Главное достоинство такого компьютера - работоспособность внутри тела человека, что дает возможность, например, осуществлять подачу лекарства там, где это необходимо. Также такие компьютеры позволят моментально производить идентификацию заболеваний в организме.

    Еще два варианта КОМПЬЮТЕРА БУДУЩЕГО - фотонный и квантовый компьютеры. Первый работает на оптических процессах, и все операции в нем выполняются посредством манипуляции оптическим потоком. Преимущества такого компьютера заключаются в свойствах световых потоков. Скорость их распространения выше, чем у электронов, к тому же взаимодействие световых потоков с нелинейными средами не локализовано, а распределено по всей среде, что дает новые степени свободы (по сравнению с электронными системами) в организации связей и создании параллельных архитектур. Производительность оптического процессора может составлять 10 13 -10 15 операций в секунду. На сегодняшний день есть прототипы оптических процессоров, способные выполнять элементарные операции, но полноценных и готовых к производству компьютеров нет.


    Квантовый компьютер основан на законах квантовой механики. Для выполнения операций квантовый компьютер использует не биты, а кубиты - квантовые аналоги битов. В отличие от битов, кубиты могут одновременно находится в нескольких состояниях. Такое свойство кубитов позволяет квантовому компьютеру за единицу времени проводить больше вычислений. Область применения квантового компьютера – переборные задачи с большим числом итераций.

    КВАНТОВЫЙ КОМПЬЮТЕР - проблема создания

    Все прототипы компьютеров будущего – ДНК-компьютеры, молекулярные и фотонные - разные грани одного целого - идеи создания полнофункционального квантового компьютера. Все микрочастицы, будь то кванты, атомы или молекулы - могут быть описаны волновой функцией состояния и подчиняются единым законам квантовой механики. Таким образом, работы над каждым типом компьютеров базируются на одном фундаменте. Но у них есть и общие проблемы. Необходимо научиться объединять частицы в совокупности и работать как с каждой частицей в отдельности, так и с совокупностью в целом. К сожалению, на сегодняшний день технологии не позволяют производить такие манипуляции. К тому же система управления должна поддерживать масштабируемость системы частиц, благодаря которой можно наращивать мощность компьютера. Решение этой проблемы станет очередным прорывом в науке. Над созданием квантового компьютера работают в лабораториях всего мира, в том числе и российских. Например, с 2001 года в Казанском физико-техническом институте начали вести работы в области квантовой памяти и на сегодняшний день исследуют новые твердотельные материалы, пригодные для хранения кубитов. Также решается задача длительности хранения информации, но пока что это время составляет всего несколько миллисекунд. Сергей Моисеев - ведущий научный сотрудник Казанского физико-технического института прокомментировал ситуацию с созданием квантового компьютера так: «Насколько я себе представляю, дело в том, что сложность этой проблемы была не сразу осознана. После того как был проведен первый цикл исследований, были сформулированы проблемы, в том числе и физические, которые предстояло решить. На данный момент создание квантового компьютера напоминает своего рода современный Манхэттенский проект. Цель - создать квантовый компьютер, оперирующий 1000 кубитами, с возможностью его масштабируемости».

    Однако развитие квантового компьютера тормозят не только технические проблемы, но и экономические. Долгое время на решение этой задачи выделялось крайне мало средств, особенно в России. Инновационный проект, в случае его успеха, начнет приносить доход лишь спустя длительное время, при этом на этапе старта потребуются крупные капиталовложения. Сейчас, когда преимущества квантового компьютера стали очевидны, начали появляться и инвестиции, но их доля относительно других отраслей по-прежнему невелика.

    Что же касается текущей ситуации в мире, то уже есть модель, работающая на двух кубитах. Конечно это не 1000, к которым стремятся ученые, но он уже может найти множители, на которые разлагается число. Потенциал же килокубитного квантового компьютера огромен. Он сможет за минуты просчитывать данные, на которые у нынешних систем уйдут годы, а то и десятилетия. С точки зрения информационной безопасности, как только будет построен квантовый компьютер, все системы защиты данных с открытым ключом рухнут, так как квантовый алгоритм позволяет быстро взломать коды. Самый производительный современный компьютер, если и решит эту задачу, то за несколько лет. Сегодня криптозащита держится только по той причине, что квантовый компьютер находится в самом начале своего развития и 2-3-х кубитов не достаточно для взлома шифров.

    Предвидя такое развитие событий, компании задумываются о квантовой криптографии, против которой компьютер нового поколения будет бессилен. Особенность квантовой криптозащиты в том, что при попытке «подслушать» информацию она разрушается по закону неопределенности Гейзенберга. Таким образом, при попытке получить доступ к зашифрованному потоку, информация в нем будет утеряна. Однако не стоит считать неуязвимость квантовой криптозащиты абсолютной, как и в любой системе, в ней есть свои слабые места.

    Специалисты утверждают, что ближайшая реализация квантового компьютера - система finger printing в научном мире известная, как метод характеристических признаков. Она будет содержать примерно 20-30 кубитов и предназначена для выделения «струны» – последовательности данных из базы данных, содержащей небольшой бит информации с некими характерными признаками. И если сравнить эту «струну» со «струной» из другой базы, то с определенной долей вероятности можно определить, одинаковые эти базы данных или нет. В течение нескольких ближайших лет фирма HP собирается представить такой компьютер, работающий на квантовых точках. Нити с определенной вероятностью довольно точно описывают исходную базу. И если две выбранные последовательности признаков совпадают, то можно предположить, что и исходные базы данных одинаковы. Например, при сканировании сетчатки глаза в системе контроля доступа можно снимать информацию не обо всей сетчатке, а только определенные параметры. Совокупность таких параметров и будет «струной». Квантовый компьютер не будет конкурентом нынешним, скорее, он предназначен для решения задач с огромным количеством исходной информации и большим числом переменных. Такие задачи характерны для систем криптографии и безопасной передачи данных, биологии и медицины, моделирования квантовых систем, оптимизации различных процессов.

    МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

    ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

    Кафедра ТПО

    РЕФЕРАТ

    По Информатике и вычислительной технике

    «Тенденции и перспективы развития информатики и вычислительной техники»


    Введение

    1. Тенденции развития вычислительных систем

    2. Тенденции развития информатики

    Заключение

    Список литературы


    Введение

    Появление и развитие электронной вычислительной техники во второй половине ХХ века оказало и продолжает оказывать огромное влияние на мировое общество и мировую экономику. Значимость информационных технологий на основе компьютеризации носит глобальный характер. Их воздействие касается государственных структур и институтов гражданского общества, экономической и социальной сфер, науки и образования, культуры и образа жизни людей.

    В наше время жизнь каждого отдельного человека и всего социума в целом тесно связана с компьютером. Электронно-вычислительная техника всё шире входит во все сферы нашей жизни. Компьютер стал привычным не только в производственных целях и научных лабораториях, но и в студенческих аудиториях и школьных классах. Непрерывно растёт число специалистов, работающих с персональным компьютером, который становится их основным рабочим инструментом. Ни экономические, ни научные достижения невозможны теперь без быстрой и четкой информационной связи и без специального обученного персонала.

    В продолжение всей истории вычислительной техники дискутируется проблема специализации средств вычислительной техники (СВТ) и вычислительных систем (ВС) в постановке: альтернатива это или дополнение к направлению развития универсальных компьютерных систем. Станет ли «универсальная» ВС «специализированной», если в ее состав будет включен, например, специализированный процессор? Вместе с тем, любая конкретная универсальная ВС ограничена сферой своего целевого назначения и вследствие этого приобретает свойства специализированности (по крайней мере, на уровне прикладного программного обеспечения).

    Академик В.М. Глушков подчеркивал: «… требования увеличения эффективности оборудования, а также упрощения программирования и облегчения общения с человеком ведут к специализации процессоров, хотя каждый из таких специализированных процессоров будет оставаться алгоритмически универсальным и потому в принципе пригодным и для других применений»

    Кроме того, успешная реализация ряда современных проектов, связанных с разработкой и производством современных военных систем, позволяет говорить о серьезном прорыве в традиционных подходах к формированию технической и бизнес-политики создания компьютерных систем. Основу этого прорыва составляет то, что для реализации военных проектов широко использованы готовые аппаратные и программные технологии открытого типа, ранее широко апробированные и стандартизированные на рынке общепромышленных гражданских приложений. Это так называемые COTS-технологии (Commercial Off-The-Shelf – «готовые к использованию»). Нормативная база COTS-технологий развивается и поддерживается как в рамках международных (IEC/МЭК, ISO) и национальных (ANSI, DIN, IEEE, ГОСТ) организаций по стандартизации, так и в рамках крупных профессиональных консорциумов (ARINC, PCISIG, VITA, PICMG, Group IPC и т.д.). Стандартизация ведется совместными усилиями большого числа конкурирующих компаний: Motorola, HP, IBM, Sun, производящих совместимую серийную технику.

    развитие вычислительная система информатика


    Тенденции развития вычислительных систем

    Информатика и её практические результаты становятся важнейшим двигателем научно-технического прогресса и развития человеческого общества. Её технической базой являются средства обработки и передачи информации. Скорость их развития поразительна, в истории человечества этому бурно развивающемуся процессу нет аналога. Можно утверждать, что история вычислительной техники уникальна, прежде всего, фантастическими темпами развития аппаратных и программных средств. В последнее время идет активный рост слияния компьютера, средств связи и бытовых приборов в единый набор. Будут создаваться новые системы, размещенные на одной интегральной схеме и включающие кроме самого процессора и его окружения, еще и программное обеспечение.

    Главной тенденцией развития вычислительной техники в настоящее время является дальнейшее расширение сфер применения ЭВМ и, как следствие, переход от отдельных машин к их системам – вычислительным системам и комплексам разнообразных конфигураций с широким диапазоном функциональных возможностей и характеристик.

    Наиболее перспективные, создаваемые на основе персональных ЭВМ, территориально распределенные многомашинные вычислительные системы – вычислительные сети – ориентируются не столько на вычислительную обработку информации, сколько на коммуникационные информационные услуги: электронную почту, системы телеконференций и информационно-справочные системы.

    Специалисты считают, что в первой четверти XXI в. в цивилизованных странах произойдет смена основной информационной среды. Удельные объемы информации, получаемой обществом по традиционным информационным каналам (радио, телевидение, печать) станут катастрофически малы по сравнению с объемами получаемой информации посредством компьютерных сетей.

    Прогнозируется дальнейший рост массового производства и распространения персональных ЭВМ, встраиваемых микропроцессоров, создания глобальных и региональных сетей обмена информацией. Примером здесь является развитие сети Internet.

    Уже сегодня пользователям глобальной сети Internet стала доступной практически любая находящаяся в хранилищах знаний этой сети не конфиденциальная информация.

    Электронная почта Internet позволяет получить почтовое отправление из любой точки Земного шара (где есть терминалы этой сети) через 5 с, а не через неделю или месяц, как это имеет место при использовании обычной почты.

    В Массачусетском университете (США) создана электронная книга, куда можно записывать любую информацию из сети; читать эту книгу можно, отключившись от сети, автономно, в любом месте. Сама книга в твердом переплете, содержит тонкие жидкокристаллические индикаторы – страницы с бумагообразной синтетической поверхностью и высоким качеством "печати".

    При разработке и создании собственно ЭВМ существенный и устойчивый приоритет в последние годы имеют сверхмощные компьютеры – суперЭВМ и миниатюрные, и сверхминиатюрные ПК. Ведутся, как уже указывалось, поисковые работы по созданию ЭВМ 6-го поколения, базирующихся на распределенной нейронной архитектуре, – нейрокомпьютеров. В частности, в нейрокомпьютерах могут использоваться уже имеющиеся специализированные сетевые МП – транспьютеры.

    Транспьютер – микропроцессор сети со встроенными средствами связи. Например, транспьютер IMS T 800 при тактовой частоте 30 МГц имеет быстродействие 15 млн. оп/с (операций в сек.), а транспьютер Intel WARP при тактовой частоте 20 МГц – 20 млн. оп/с (оба транспьютера 32-разрядные).

    Ближайшие прогнозы по созданию отдельных устройств ЭВМ:

    1. Микропроцессоры с быстродействием 1000 MIPS (MIPS - скорость операций в единицу времени) и встроенной памятью 16 Мбайт.

    2. Встроенные сетевые и видеоинтерфейсы;

    3. Плоские (толщиной 3-5 мм) крупноформатные дисплеи с разрешающей способностью 1000x800 пикселей и более;

    4. Портативные, размером со спичечный коробок, магнитные диски емкостью более 100 Гбайт. Терабайтные дисковые массивы на их основе сделают практически ненужным стирание старой информации.

    Повсеместное использование мультиканальных широкополосных радио-, волоконно-оптических, а в пределах прямой видимости и инфракрасных каналов обмена информацией между компьютерами обеспечит практически неограниченную пропускную способность (трансфер до сотен миллионов байт в секунду).

    Широкое внедрение средств мультимедиа, в первую очередь аудио- и видеосредств ввода и вывода информации, позволит общаться с компьютером на естественном языке. Мультимедиа нельзя трактовать узко, только как мультимедиа на ПК. Можно говорить о бытовом (домашнем) мультимедиа, включающем в себя и ПК, и целую группу потребительских устройств, доводящих потоки информации до потребителя и активно забирающих информацию у него.

    Этому уже сейчас способствуют:

    1. Зарождающиеся технологии медиа-серверов, способных собирать и хранить огромнейшие объемы информации и выдавать ее в реальном времени по множеству одновременно приходящих запросов;

    2. Системы сверхскоростных широкополосных информационных магистралей, связывающие воедино все потребительские системы.

    Названные ожидаемые технологии и характеристики устройств ЭВМ совместно с их общей миниатюризацией могут сделать всевозможные вычислительные средства и системы вездесущими, привычными, обыденными, естественно насыщающими нашу повседневную жизнь.

    Специалисты предсказывают в ближайшие годы возможность создания компьютерной модели реального мира, такой виртуальной (кажущейся, воображаемой) системы, в которой мы можем активно жить и манипулировать виртуальными предметами. Простейший прообраз такого кажущегося мира уже сейчас существует в сложных компьютерных играх. Но в будущем можно говорить не об играх, а о виртуальной реальности в нашей повседневной жизни, когда нас в комнате, например, будут окружать сотни активных компьютерных устройств, автоматически включающихся и выключающихся по мере надобности, активно отслеживающих наше местоположение, постоянно снабжающих нас ситуационно необходимой информацией, активно воспринимающих нашу информацию и управляющих многими бытовыми приборами и устройствами.

    Появление ПК справедливо считают грациозной научно-технической революцией, сравнимой по масштабам с изобретением электричества, радио. К моменту рождения ПК вычислительная техника уже существовала четверть века. Старые ЭВМ были отделены от массового пользователя, с ними работали специалисты (электронщики, программисты, операторы). Рождение ПК сделало ЭВМ массовым инструментом. Облик ЭВМ кардинально изменился: она стала дружественной (т.е. способной вести культурный диалог с человеком на визуально комфортном экране). В настоящее время в мире используются сотни миллионов ПК как на производстве, так и в повседневной жизни.

    Информатика и её практические результаты становятся важнейшим двигателем научно-технического прогресса и развития человеческого общества. Её технической базой являются средства обработки и передачи информации. Скорость их развития поразительна, в истории человечества этому бурно развивающемуся процессу нет аналога. Можно утверждать, что история вычислительной техники уникальна, прежде всего, фантастическими темпами развития аппаратных и программных средств. В последнее время идет активный рост слияния компьютера, средств связи и бытовых приборов в единый набор. Будут создаваться новые системы, размещенные на одной интегральной схеме и включающие кроме самого процессора и его окружения, еще и программное обеспечение.

    Уже сейчас на смену универсальным компьютерам приходят новые устройства - смартфоны, решающие конкретный спектр задач своего владельца. Развивается система карманных компьютеров.

    Характерной чертой компьютеров пятого поколения обязано быть внедрение искусственного интеллекта и естественных языков общения. Предполагается, что вычислительные машины пятого поколения будут просто управляемы. Пользователь сумеет голосом подавать машине команды.

    Предполагается, что XXI век будет веком наибольшего использования достижений информатики в экономике, политике, науке, образовании, медицине, быту, военном деле.

    Главной тенденцией развития вычислительной техники в настоящее время является дальнейшее расширение сфер внедрения ЭВМ и, как следствие, переход от отдельных машин к их системам - вычислительным системам и комплексам разнообразных конфигураций с широким спектром функциональных возможностей и черт.

    Более перспективные, создаваемые на базе персональных ЭВМ, территориально распределенные многомашинные вычислительные системы. Вычислительные сети - ориентируются не столько на вычислительную обработку информации, сколько на коммуникационные информационные сервисы: электронную почту, системы телеконференций и информационно-справочные системы. Специалисты считают, что в начале XXI в. в цивилизованных странах произойдет смена основной информационной среды.

    В последние годы, при разработке новых ЭВМ большее внимание уделялось сверхмощным компьютерам - суперЭВМ и миниатюрным, и сверхминиатюрные ПК. Ведутся поисковые работы по созданию ЭВМ 6-го поколения, базирующихся на распределенной нейронной архитектуре, нейрокомпьютеров. В частности, в нейрокомпьютерах могут употребляться уже имеющиеся специализированные сетевые МП - транспьютеры - микропроцессоры сети со встроенными средствами связи.

    Примерная характеристика компьютеров шестого поколения.

    История и тенденции развития вычислительной техники

    Принципы построения компьютера

    В 1946 году появилась первая электронная вычислительная машина (компьютер), что явилось громадным достижением человечества. В реализации проекта принимали активное участие такие крупные ученые, как К. Шеннон, Н. Виннер, Дж. фон Нейман и др.
    Размещено на реф.рф
    С этого момента началась эра вычислительной техники. За прошедшее время вычислительная техника, микроэлектроника и вся индустрия информатики стали одной из базовых составляющих мирового научно-технического прогресса. Их развитие осуществлялось темпами, которых не знала ни одна отрасль де-ятельности человека. Влияние вычислительной техники на всœе сферы деятельности человека продолжает расширяться. Сегодня компьютеры используются не только для автоматизации сложных расчетов, но и в управлении производственными процессами, в образовании, здравоохранении, экологии и т.п.

    Математические основы автоматических вычислений были уже разработаны ранее (Г. Лейбниц, Дж. Буль, A. Тьюринг и др.), но появление компьютеров стало возможным только благодаря развитию электронной техники. Многократные попытки создания разного рода автоматических вычислительных устройств (от простейших счетов до механических и электромеханических вычислителœей) не привели к созданию надежных и экономически эффективных машин.

    Появление электронных схем сделало возможным построение электронных вычислительных машин.

    Электронная вычислительная машина (ЭВМ) , или компьютер , - это комплекс аппаратных и программных средств, предназначенный для автоматизации подготовки и решения задач пользователœей. Следует отметить, что в настоящее время термин "электронная вычислительная машина" практически не используется, уступив место термину "компьютер".

    Под пользователœем понимают человека, в интересах которого проводится обработка данных. В качестве пользователя могут выступать заказчики вычислительных работ, программисты, операторы.

    Компьютеры являются универсальными техническими средствами автоматизации вычислительных работ, то есть они способны решать любые задачи, связанные с преобразованием информации. При этом подготовка задач к решению была и остается до настоящего времени достаточно трудоемким процессом, требующим от пользователœей во многих случаях специальных знаний и навыков. Как правило, время подготовки задач во много раз превышает время их решения.

    Важно заметить, что для снижения трудоемкости подготовки задач к решению, более эффективного использования отдельных технических, программных средств и компьютера в целом, а также облегчения их эксплуатации создается специальный комплекс программных средств. Обычно аппаратные и программные средства взаимосвязаны и объединяются в одну структуру.

    Структура представляет собой совокупность элементов и их связей. Учитывая зависимость отконтекста различают структуры технических, программных, аппаратно-программных и информационных средств.

    Часть программных средств обеспечивает взаимодействие пользователœей с компьютером и является своеобразным "посредником" между ними. Она получила название "операционная система" и является ядром программного обеспечения.

    Под программным обеспечением понимают комплекс программных средств регулярного применения, создающий необходимый сервис для работы пользователœей.

    Программное обеспечение (ПО) отдельных компьютеров и вычислительных систем (ВС), созданных на их основе, может сильно различаться составом используемых программ, который определяется классом используемой вычислительной техники, режимами ее применения, содержанием вычислительных работ пользователœей и т.п. Развитие ПО в значительной степени носит эволюционный и эмпирический характер, но можно выделить закономерности в его построении.

    В общем случае процесс подготовки и решения задач предусматривает обязательное выполнение следующей последовательности этапов: формулировка проблемы и математическая постановка задачи; выбор метода и выработка алгоритма решения; программирование (запись алгоритма) с использованием некоторого алгоритмического языка; планирование и организация вычислительного процесса - порядка и последовательности использования ресурсов компьютеров и вычислительных систем (ВС); формирование "машинной программы", то есть программы, которую непосредственно будет выполнять компьютер; собственно решение задачи - выполнение вычислений по готовой программе.

    По мере развития вычислительной техники автоматизация этих этапов идет снизу вверх. На пути развития электронной вычислительной техники обычно выделяют четыре поколения компьютеров, отличающихся элементной базой, функционально-логической организацией, конструктивно-технологическим исполнением, программным обеспечением, техническими и эксплуатационными характеристиками, степенью доступа к ресурсам со стороны пользователœей.

    Смене поколений сопутствует изменение базовых технико-эксплуатационных и технико-экономических показателœей компьютеров и в первую очередь таких, как быстродействие, емкость памяти, надежность и стоимость. При этом одной из базовых тенденций развития было и остается стремление уменьшить трудоемкость подготовки программ решаемых задач, облегчить связь пользователœей с компьютерами, повысить эффективность использования последних. Это диктовалось и диктуется постоянным ростом сложности и трудоемкости задач, решение которых возлагается на компьютеры в различных сферах их применения.

    Возможности улучшения технико-эксплуатационных показателœей компьютеров в значительной степени зависят от элементов, используемых для построения их электронных схем. По этой причине при рассмотрении этапов развития компьютеров каждое поколение в первую очередь характеризуется используемой элементной базой.

    Основным активным элементом компьютеров первого поколения являлась электронная лампа, остальные компоненты электронной аппаратуры - это обычные резисторы, конденсаторы, трансформаторы. Для построения оперативной памяти уже с середины 50-х годов начали применяться специально разработанные для этой цели элементы - ферритовые сердечники с прямоугольной петлей гистерезиса. В качестве устройства ввода-вывода сначала использовалась стандартная телœеграфная аппаратура (телœетайпы, ленточные перфораторы, трансмиттеры, аппаратура счетно-перфорационных машин), а затем специально были разработаны электромеханические запоминающие устройства на магнитных лентах, барабанах, дисках и быстродействующие печатающие устройства.

    Компьютеры этого поколения имели значительные размеры, потребляли большую мощность. Быстродействие этих машин составляло от нескольких сотен до нескольких тысяч операций в секунду, емкость памяти - несколько тысяч машинных слов, надежность исчислялась несколькими часами работы.

    В этих ЭВМ автоматизации подлежал этап выполнения вычислений, так как у них практически отсутствовало какое-либо программное обеспечение. Все этапы подготовки пользователь должен был готовить вручную самостоятельно, вплоть до получения машинных кодов программ. Трудоемкий и рутинный характер этих работ был источником большого количества ошибок в заданиях. По этой причине в компьютерах следующих поколений появились сначала блоки программ, а затем целые программные системы, облегчающие процесс подготовки задач к решению.

    На смену лампам пришли транзисторы в машинах второго поколения (начало 60-х годов). Применение постоянно совершенствуемых транзисторов позволило преобразовать окружающий человека мир (радио, телœевидение, бытовая аппаратура, системы связи и т.п.). Компьютеры стали обладать большими быстродействием, емкостью оперативной памяти, надежностью. Все основные характеристики постоянно улучшались. Существенно были уменьшены размеры, масса и потребляемая мощность.

    В компьютерах этого поколения появились методы и приемы программирования, высшей ступенью которых явилось появление систем автоматизации программирования, значительно облегчающих труд математиков-программистов. Большое развитие и применение получили алгоритмические языки, существенно упрощающие процесс подготовки задач к решению. Это привело к созданию библиотек стандартных программ, что позволило строить машинные программы блоками, используя накопленный и приобретенный программистами опыт.

    Третье поколение компьютеров (в конце 60-х - начале 70-х годов) характеризуется широким применением интегральных схем. Интегральная схема представляет собой законченный логический и функциональный блок, соответствующий достаточно сложной транзисторной схеме. Благодаря использованию интегральных схем удалось еще более улучшить технические и эксплуатационные характеристики машин. Вычислитель-ная техника стала иметь широкую номенклатуру устройств, которые позволили строить разнообразные системы обработки данных, ориентированные на различные применения.

    Отличительной особенностью развития программных средств этого поколения является появление ярко выраженного программного обеспечения и развитие его ядра - операционных систем, отвечающих за организацию и управление вычислительным процессом. Стоимость программного обеспечения стала расти и в настоящее время намного опережает стоимость аппаратуры (рис.13.1). Наибольшая крутизна графика соответствует времени появления операционных систем - началу 80-х годов.

    ОС планирует последовательность распределœения и использования ресурсов вычислительной системы, а также обеспечивает их согласованную работу. Под ресурсами обычно понимают те средства, которые применяются для вычислений: машинное время отдельных процессоров или компьютеров, входящих в систему; объёмы оперативной и внешней памяти; отдельные устройства, информационные массивы; библиотеки программ; отдельные программы, как общего, так и специального применения, и т.п. Интересно, что наиболее употребительные функции ОС в части обработки внештатных ситуаций (защита программ от взаимных помех, системы прерываний и приоритетов, служба времени, сопряжение с каналами связи и т.д.) были полностью или частично реализованы аппаратно. Одновременно были реализованы более сложные режимы работы: коллективный доступ к ресурсам, мультипрограммные режимы. Часть этих решений стала своеобразным стандартом и начала использоваться повсœеместно в компьютерах различных классов.

    Рис. 13.1. Динамика изменения стоимости аппаратурных и программных средств

    Здесь были существенно расширены возможности доступа к ним со стороны абонентов, находящихся на различных, в т.ч. и значительных (десятки и сотни километров) расстояниях. Удобство общения абонента с компьютером достигалось за счёт развитой сети абонентских пунктов, связанных с ним информационными каналами связи, и соответствующего программного обеспечения.

    Для компьютеров четвертого поколения (80-е годы) характерно применение больших интегральных схем (БИС). Высокая степень интеграции способствовала увеличению плотности компоновки электронной аппаратуры, усложнению ее функций, повышению надежности и быстродействия, снижению стоимости. Это, в свою очередь, оказало существенное воздействие на логическую структуру компьютера и его программное обеспечение

    В четвертом поколении с появлением микропроцессоров (1971 ᴦ.) возник новый класс вычислительных машин - микроЭВМ, на смену которым пришли персональные компьютеры (ПК, начало 80-х годов). В этом классе наряду с БИС стали использоваться сверхбольшие интегральные схемы (СБИС) 32-, а затем 64-разрядности.

    Появление ПК - наиболее яркое событие в области вычислительной техники, до последнего времени самый динамично развивающийся сектор отрасли. С их внедрением решение задач информатизации общества было поставлено на реальную основу.

    Применение ПК позволило сделать труд специалистов творческим, интересным, эффективным. Коренным образом были преобразованы сферы делопроизводства, торговли, складского учета и т.п. Компьютеры стали использоваться в различных системах управления технологическими процессами, производствами, фирмами, организациями и т.д.

    Применение ПК позволило применять новые информационные технологии и создавать системы распределœенной обработки данных. Высшей стадией систем распределœенной обработки данных являются компьютерные (вычислительные) сети различных уровней - от локальных до глобальных.

    В своем развитии компьютеры первых четырех поколений не выходили за рамки классической структуры, ориентированной на последовательные вычисления по программе. Но в начале нового тысячелœетия (2005-2006 гᴦ.) в связи с успехами микроэлектроники появились, а затем стали доминировать многоядерные микропроцессоры. Это позволило пе-рейти к параллельным вычислениям даже внутри отдельного компьютера. Де-факто возникли качественно новые по построению и своим возможностям компьютеры следующего поколения. При этом еще в 1980 году появился японский проект создания компьютеров пятого поколения, отличительной особенностью которых должен быть встроенный искусст-венный интеллект. Видимо, несовпадение признаков классификации не позволяет сейчас узаконить переход на компьютеры нового поколения.

    В новых компьютерах продолжается усложнение технических и программных структур (иерархия управления средствами, увеличение их количества, параллелизм в работе). Следует указать на заметный рост уровня "интеллектуальности" систем, создаваемых на их основе. Подобные тенденции будут сохраняться и впредь. Так, по мнению исследователœей , новые компьютеры наращивают и совершенствуют встроенный в них "искусственный интеллект", что позволяет пользователям обращаться к ним на естественном языке, вводить и обрабатывать тексты, документы, иллюстрации, создавать системы обработки знаний и т.д. Аппаратная часть компьютеров постоянно усложняется, для них приходится создавать сложное многоэшелонное иерархическое программное обеспечение.

    Основные характеристики и классификация компьютеров

    Эффективное применение вычислительной техники предполагает, что каждый вид вычислений требует использования компьютера с определœенными характеристиками.

    Важнейшими из них служат быстродействие и производительность. Эти характеристики достаточно близки, но их не следует смешивать.

    Быстродействие характеризуется числом определœенного типа команд, выполняемых за одну секунду. Производительность - это объём работ (к примеру, число стандартных программ), выполняемый в единицу времени.

    Определœение характеристик быстродействия и производительности представляет собой очень сложную инженерную и научную задачу, до настоящего времени не имеющую единых подходов и методов решения. Обычно вместо получения конкретных значений этих характеристик указывают результаты сравнения данных, полученных при испытаниях (тестированиях) различных образцов.

    Другой важнейшей характеристикой компьютера является емкость запоминающих устройств . Емкость памяти измеряется количеством структурных единиц информации, ĸᴏᴛᴏᴩᴏᴇ может одновременно находиться в памяти. Этот показатель позволяет определить, какой набор программ и данных должна быть одновременно размещен в памяти.

    Наименьшей структурной единицей информации является бит - одна двоичная цифра. Как правило, емкость памяти оценивается в более крупных единицах измерения - байтах (байт равен 8 битам). Следующими единицами измерения служат .

    Обычно отдельно характеризуют емкости оперативной и внешней памяти. Сегодня персональные компьютеры имеют емкость оперативной памяти, равную 512Мбайт, 1Гбайт и даже больше. Этот показатель очень важен для определœения, какие программные пакеты и их приложения могут одновременно обрабатываться в машинœе.

    Емкость внешней памяти зависит от типа носителя. Так, практически исчезли из обращения дискеты как накопители и средства переноса и хранения данных. На смену им пришла флэш-память, емкость которой должна быть от нескольких Гбайт до Тб. Пока сохраняют свое значение и традиционные накопители. Емкость дисков DVD достигает нескольких десятков Гбайтов, емкость компакт-диска (CD-ROM) - 640 Мб и выше, жестких дисков - сотни Гбайт и т.д. Емкость внешней памяти характеризует объём программного обеспечения и отдельных программных продуктов, которые могут устанавливаться. К примеру, для установки операционной среды Windows 7 исходя из версии требуется объём памяти жесткого диска 160Гб-1Тб и оперативной памяти 1-3Гб.

    Надежность - это способность компьютера при определœенных условиях выполнять требуемые функции в течение заданного периода времени (стандарт ISO - 2382/14-78).

    Высокая надежность компьютера закладывается в процессе его производства. Переход на новую элементную базу - сверхбольшие интегральные схемы (микропроцессоры и схемы памяти) резко сокращает число используемых интегральных схем, а значит, и число их соединœений друг с другом.

    Точность - возможность различать почти равные значения (стандарт ISO 2382/2-76). Точность получения результатов обработки в основном определяется разрядностью компьютера, а также используемыми структурными единицами представления информации (байтом, словом, двойным словом).

    Современные компьютеры, включая ПК, имеют возможность работы с 32- и даже с 64-разрядными машинными словами. С помощью языков программирования данный диапазон должна быть увеличен в несколько раз, что позволяет достигать очень высокой точности.

    Достоверность - свойство информации быть правильно воспринятой. Достоверность характеризуется вероятностью получения безошибочных результатов. Заданный уровень достоверности обеспечивается аппаратно-программными средствами контроля. Возможны методы контроля достоверности путем решения эталонных задач и повторных расчетов. В особо ответственных случаях проводятся контрольные решения на других компьютерах и сравнение результатов.

    Усложнение схем компьютеров приводит к увеличению энергопотребления, что порождает целый ряд проблем. По этой причине для микропроцессоров введена характеристика, отражающая класс мощности (энерго-потребление, TDP - Thermal Design Power, тепловой пакет).

    Сегодня в мире произведены, работают и продолжают выпускаться миллионы вычислительных машин, относящиеся к различным поколениям, типам, классам и отличающиеся своими областями применения, техническими характеристиками и вычислительными возможностями.

    Основные черты рынка современных компьютеров - разнообразие и динамизм. Практически каждые полтора десятилетия меняется поколение машин, каждые два года _ основные типы микропроцессоров, СБИС, определяющих характеристики новых вычислителœей. Такие темпы сохраняются уже многие годы.

    Рынок компьютеров постоянно имеет широкую градацию классов и моделœей. Существует большое количество классификационных признаков, по которым всœе это множество разделяют на группы: по уровням специализации (универсальные и специализированные), по типоразмерам (настольные, портативные, карманные), по совместимости, по типам используемых микропроцессоров и количеству их ядер, по возможностям и назначению и др.
    Размещено на реф.рф
    . Разделœение компьютеров по поколениям, изложенное в п. 13.1, также является одним из видов классификации. Наиболее часто используют классификацию компьютеров по возможностям и назначению, а в последнее время - и по роли компьютеров в сетях.

    По возможностям и назначению компьютеры подразделяют:

    · суперЭВМ , необходимые для решения крупномасштабных вычислительных задач, а также для обслуживания крупнейших информационных банков данных.

    С развитием науки и техники постоянно выдвигаются новые крупномасштабные задачи, требующие выполнения больших объёмов вычислений. Особенно эффективно применение суперЭВМ при решении задач проектирования, в которых натурные эксперименты оказываются дорогостоящими, недоступными или практически неосуществимыми. СуперЭВМ по сравнению с другими типами машин позволяют точнее, быстрее и качественнее решать крупные задачи, обеспечивая необходимый приоритет в научных выработках, в т.ч. и в перспективной вычислительной технике.

    Неудивительно, что мощные компьютеры являются особым достоянием любого государства. В Интернете отслеживается список пятисот самых мощных компьютеров мира (top500.org). Их выработка возведена в ранг государственной политики ведущих в экономическом отношении стран и является одним из важнейших направлений развития науки и техники. Список top500 сейчас возглавляют китайский компьютер Tianhe-1A и компьютер Cray XT5-HE Jaguar, с быстродействием соответственно 2,67 и 1,759 PFLOP (1 петафлоп= оп/с). В списке top500 имеются суперкомпьютеры, используемые в России. Их число возросло до одиннадцати штук, и Россия вышла на 7-ое место. Пятьдесят самых мощных компьютеров России отслеживаются на отечественном сайте http//supercomputers.ru (список top50);

    • большие ЭВМ , предназначенные для комплектования ведомственных, территориальных и региональных вычислительных центров (министерства, государственные ведомства и службы, крупные банки и т.д.). Примером подобных машин, а точнее, систем, могут служить компьютеры, предназначенные для обеспечения научных исследований, для построения рабочих станций для работы с графикой, UNIX-серверов, кластерных комплексов;
    • средние ЭВМ , широко используемые для управления сложными технологическими и производственными процессами (банки, страховые компании, торговые дома, издательства). Компьютеры этого типа могут применяться и для управления распределœенной обработкой информации в качестве сетевых серверов;
    • персональные и профессиональные компьютеры (ПК) , позволяющие удовлетворить индивидуальные потребности пользователœей. На базе этого класса ЭВМ строятся автоматизированные рабочие места (АРМ) для специалистов различного уровня. К настоящему времени в развитых странах ниша ПК практически заполнилась;
    • мобильные и карманные компьютеры . Появление микропроцессоров способствовало разработке на их базе разнообразных устройств, используемых в различных областях жизнедеятельности человека: мобильная связь, бытовая техника, авто, игровые приставки, электронные записные книжки т.п. Аналитики предсказывают их прогрессирующее развитие на ближайшие 5-10 лет .

    Появлению новых устройств способствуют следующие факторы:

    • экономические - новые устройства успешно конкурируют со старыми, традиционными. К примеру, сотовая связь уверенно отвоевывает клиентов обычной телœефонной связи;
    • технологические - новые технологии обеспечивают качественно новые услуги (мобильный офис, телœеконференции, предложение товаров от ближайших поставщиков и т.д.);
    • социальные - мобильные телœефоны и досуг с использованием Интернета становятся стилем жизни;
    • бизнес-факторы - бизнес требует новых типов предложений под лозунгами "Услуги в любое время и в любом месте" и предоставления каждому "Своего офиса в кармане".

    Рассмотрим упрощенную градацию подобных устройств.

    Ноутбуки (Notebooks) . Совершенствование микропроцессоров привело к созданию мощных, дружественных и малогабаритных компьютеров, вполне способных обеспечить создание мобильного офиса различного класса с ориентацией на электронную почту, передачу факсов, доступ в Интернет. Интересно, что кризис IT-рынка почти не затронул сектор ноутбуков. Их производство устойчиво и вытесняет обычные ПК. Конфигурации ноутбуков обеспечивают широкие возможности. Ценовой диапазон - от 0,5 до 3-4 тысяч долларов. Миниатюрные ноутбуки позволяют решать практически всœе задачи, присущие настольным ПК, они обладают теперь достаточной мощностью, расширяемостью и гибкостью. Но пока они еще достаточно дороги, и время их автономной работы огра-ничено несколькими часами.

    Младшей разновидностью ноутбуков следует считать UMPC (ultra-mobile PC, ультрамобильный ПК). В случае если UMPC достаточно дороги, то проект OLPC (One Laptop per Child - "По ноутбуку каждому ребенку") имеет целью развитие инфраструктуры беднейших стран мира. Согласно ему небольшие компьютеры, стоимостью менее 100$, должны в массовом количестве поставляться в беднейшие страны Африки, Азии и Латинской Аме-рики. Пока не удается снизить стоимость компьютеров ниже 150-200$.

    Конкурентом младших моделœей ноутбуков следует считать нетбуки (netbooks) , ориентированные на работу с сетевыми ресурсами Интернета. Οʜᴎ появились 2-3 года назад, но по числу продаж уже сравнялись с ноутбуками. Их производство набирает силу.

    Карманные персональные компьютеры (КПК) . Эти компьютеры ориентированы на выполнение в основном информационных функций. Οʜᴎ имеют очень широкую номенклатуру и градацию. Центральной функцией этих устройств являлось обеспечение мобильной связи. Еще 5-7 лет назад компьютеры этого типа рассматривали как конкурентов ноутбуков, однако реальность показывает, что они должны в ближайшем будущем уступить место коммуникаторам, смартфонам и специализированным устройствам (для навигации или специального применения). Сегодня границу между различными типами этих устройств тяжело провести. Коммуникатор - это упрощенный КПК, дополненный функциональностью мобильного телœефона. От мобильного телœефона он отличается на-личием установленной развитой операционной системы. Обычно особенности управления телœефонами изготовителями не разглашаются.

    Широкое распространение получили устройства, называемые смартфонами. Смартфоны (умные телœефоны), обрастая новыми функциями, способны заменить целый класс специализированных устройств и являются их киллерами.

    Сегодня почти 50% населœения Земли имеет мобильные телœефоны. Современный телœефон стоимостью в 100$ оснащен цветным экраном, встроенным фотоаппаратом с разрешением 5-7 Мпикселов, ауди-оплеером. Некоторые из них способны вести видеосъемки, просматривать видеофильмы, иметь игротеки. Некоторые способны заменить библиотеку, компьютер с доступом в Интернет и E-mail.

    Встраиваемые микропроцессоры , осуществляющие автоматизацию управления отдельными устройствами и механизмами. Успехи микроэлектроники позволяют создавать миниатюрные вычислительные устройства, вплоть до однокристальных ЭВМ. Эти устройства, универсальные по характеру применения, могут встраиваться в отдельные машины, объекты, системы. Οʜᴎ находят всœе большее применение в бытовой технике (телœе-фонах, телœевизорах, электронных часах, микроволновых печах и т.д.), в городском хозяйстве (энерго-, тепло-, водоснабжении, регулировке движения транспорта и т.д.), на производстве (робототехнике, управлении технологическими процессами). Постепенно они входят в нашу жизнь, всœе больше изменяя среду обитания человека.

    Высокие скорости вычислений позволяют перерабатывать и выдавать всœе большее количество информации, что, в свою очередь, порождает потребности в создании связей между отдельно используемыми вычислителями. По этой причине всœе современные компьютеры в настоящее время имеют средства подключения к сетям связи и объединœения в системы. С развитием сетевых технологий всœе больше начинает использоваться другой классификационный признак, отражающий их место и роль в сети. Согласно ему предыдущая классификация отражается на сетевой среде:

    • мощные машины, включаемые в состав сетевых вычислительных центров и систем управления гигантскими сетевыми хранилищами информации;
    • кластерные структуры;
    • серверы;
    • рабочие станции;
    • сетевые компьютеры.

    Мощные машины и системы предназначаются для обслуживания крупных сетевых банков данных и банков знаний. По характеристикам их можно отнести к классу суперЭВМ, но в отличие от них они являются более специализированными и ориентированными на обслуживание мощных потоков информации.

    Кластерные структуры представляют из себямногомашинные распределœенные вычислительные системы, объединяющие под единым управлением несколько серверов. Это позволяет гибко управлять ресурсами сети, обеспечивая необходимую производительность, надежность, готовность и другие характеристики.

    Серверы - это вычислительные машины и системы, управляющие определœенным видом ресурсов сети. Различают файл-серверы, серверы приложений, факс-серверы, почтовые, коммуникационные, веб-серверы и др.

    Термин "рабочая станция" отражает факт наличия в сетях абонентских пунктов, ориентированных на работу профессиональных пользователœей с сетевыми ресурсами. Этот термин как бы отделяет их от ПК, которые обеспечивают работу основной массы непрофессиональных пользователœей, работающих обычно в автономном режиме.

    Сетевые компьютеры . На базе существующих стандартных микропроцессоров появляется новый класс устройств, получивший это название. Само название говорит о том, что они предназначаются для использования в компьютерных сетях. Учитывая зависимость отвыполняемых функций и от контекста под этим термином понимают совершенно различные устройства, от простейшего компьютера-наладонника до специализированных сетевых устройств типа "маршрутизатор", "шлюз", "коммутатор" и т.п.

    Число приведенных типов компьютеров в индустриально развитых странах образует некое подобие пирамиды с определœенным соотношением численности каждого слоя. Распределœение вычислительных возможностей по слоям должно быть сбалансировано.

    История и тенденции развития вычислительной техники - понятие и виды. Классификация и особенности категории "История и тенденции развития вычислительной техники" 2017, 2018.

    Похожие статьи