• Пневмопочта жд. Пневмопочта — принцип работы пневмопочты

    21.12.2020
    (от греч. pneumatikós - воздушный)

    вид пневматического транспорта (См. Пневматический транспорт) для перемещения документов и мелких предметов потоком воздуха по трубопроводам. П. п. используют для пересылки документов на предприятиях связи, в библиотеках, банках и др. учреждениях, историй болезни и лекарств в больницах, деталей и инструментов, проб (например, горячего металла) в экспресс-лаборатории на промышленных предприятиях и т. д. Первая действующая установка П. п. с протяжённостью трубопроводов 100 м была построена на Лондонском телеграфе в 1853.

    Основные элементы установок П. п.: трубопроводы, транспортные контейнеры, приёмно-отправительные устройства и воздуходувки (См. Воздуходувка). Транспортные контейнеры - патроны или капсулы с вложенными в них предметами - с помощью приёмно-отправительного устройства закладываются в трубопровод и под действием перепада давления, создаваемого воздуходувкой, движутся от станции отправления к станции назначения, где изымаются из него. Различают П. п. внутреннюю, функционирующую внутри здания, и внешнюю, связывающую предприятия и учреждения в городе. Трубопроводы внутренней П. п. обычно выполняют из тонкостенных цельнотянутых труб внутренним диаметром 50-120 мм. Их общая длина достигает нескольких сотен м. Наименьший радиус кривизны трубопровода Пневматическая почта1 м. Материал труб - латунь, дюралюминий, сталь, а с начала 60-х гг. 20 в. - часто также полихлорвинил. Для перемещения документов и предметов стандартной формы без упаковки в патроны иногда пользуются трубопроводами прямоугольного сечения (например, 10×70 мм ). В установках внешней П. п. используют, как правило, стальные, пластмассовые или асбестоцементные трубы диаметром 65-1000 мм, прокладываемые в грунте. Их длина между соседними станциями достигает нескольких км, а общая длина - нескольких сотен км (например, в Париже - 600 км ).

    Патрон представляет собой короткий отрезок трубы, диаметр которой примерно на 25% меньше внутреннего диаметра трубопровода (рис. 1 ). На его внешней поверхности располагаются 2 (реже 1) уплотнительные головки из фетра или кожи. Средняя скорость движения патрона с вложениями массой до 1-2 кг составляет 6-20 м/сек отдельных установках до 45 м/сек ). Производительность установок П. п. - до 2,4 тыс. патронов в час.

    Приёмно-отправительное устройство в простейшем исполнении представляет собой разрыв или продольный вырез в трубопроводе, закрываемый вручную подвижной гильзой (рис. 2 ). В однотрубных реверсивных установках П. п. приёмно-отправительные станции выполняют в виде герметичного ящика, внутри которого трубопровод имеет продольный вырез. Патрон принимается автоматически с помощью клина, выдвигаемого электромагнитом (рис. 3 ).

    Для воздухоснабжения установок П. п. используют воздуходувки и вентиляторы, создающие в трубопроводах или разрежение, или избыточное давление воздуха. Давление регулируется при помощи заслонок и дроссельных клапанов.

    Применяют линейные, радиальные и кольцевые схемы соединения станций П. п. (рис. 4 ). При малых грузопотоках (до 100 патронов в час) несколько станций соединяют одним трубопроводом - линией двухстороннего действия (рис. 4 , а). В движении на такой линии может находиться только 1 патрон. В однотрубных установках внешней П. п. для увеличения их производительности применяют разъезды, которые располагают как в середине участка линии между двумя станциями, так и на станциях. При такой конструкции на участке могут двигаться одновременно несколько патронов. Двухтрубная линия (рис. 4 , б) обеспечивает независимое движение нескольких патронов в обоих направлениях. Несколько (от 2 до 6) линий могут подключаться к одному узлу - распределительному центру с ручным или автоматическим управлением, в котором производится перегрузка и сортировка патронов (рис. 4 , в). По кольцевой схеме (рис. 4 , г) патроны пересылаются между любыми станциями без перегрузок. При двухтрубной линии и кольцевой схеме приёмные станции оборудуют стрелками (на ответвлениях линии, рис. 5 ). Управление стрелками осуществляется при помощи т. н. несущей памяти - системы контактных или магнитных колец на гильзе патрона или централизованно, например при помощи телефонных искателей.

    Перспективным направлением развития П. п. является применение труб большого диаметра (450 мм в ФРГ, 600 мм во Франции, 1020 мм в СССР) и контейнеров на колёсах, соединённых в поезда (по 5-6 контейнеров в каждом), что позволяет транспортировать грузы общей массой Пневматическая почта 10 т со скоростью 40-60 км/ч.

    Лит.: Руденко Н., Говоров Ф., Пневмотранспорт документов и мелких предметов в патронах (пневмопочта), М., 1963; Контейнерный трубопроводный пневмотранспорт промышленных грузов, М., 1972; Heck G., Frerichs I., Eske W., Die Groβrohrepost, Bd 1-2, Baden-Baden, 1965-69.

    И. А. Ламм, Г. А. Птицын.

    Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Размещено на http://www.allbest.ru/

    Москва 2012г.

    ФЕДЕРАЛЬНОЕ АГЕНСТВО СВЯЗИ

    Государственное образовательное учреждение

    Профессионального образования

    Московский технический университет связи и информатики

    Кафедра защиты информации и техники почтовой связи

    РЕФЕРАТ

    Пневматическая почта

    по дисциплине «Технические средства автоматизации»

    Студент Павлов М.С.

    Группа АП0851

    Аннотация

    История пневматической почты

    На грани фантастики

    Наше время

    Пневматические транспортирующие установки

    АВМ пневматическая

    Преимущества пневматики

    Пневматический привод

    Пневмоприводы с поступательным движением

    Принцип действия пневматических машин

    Типовая схема пневмопривода

    Достоинства пневмопривода

    Недостатки пневмопривода

    Список используемой литературы

    Аннотация

    пневмопочта транспорт воздух корреспонденция

    Пневмопочта -- очень популярное, изобретение эпохи раннего капитализма с характерным городским пейзажем и контрастным социальным расслоением. Так же фигурирует субкультуре стимпанка, так и в связанной с ним литературе. Как понятно из названия, пневмопочта представляет собой транспорт для перемещения потоком воздуха по системе трубопроводов специальных капсул с корреспонденцией и небольшими предметами. Обычно она действует в пределах одного здания или, что встречается не столь часто, -- одного города.

    История пневматической почты

    Основные принципы пневматики были изложены Героном Александрийским. Этот великий инженер в первом столетии в своем трактате «Пневматика» (РнехмбфйкЬ) описал принципы и составляющие компоненты, которые до сих пор лежат в основе пневмотранспорта.

    Пневматическая почта как средство почтовой связи была предложена в 1667 году французским физиком Дени Папеном.

    Первое упоминание о похожей системе транспорта встречается еще в 1792 году. Тогда на 50-метровой колокольне Венского Собора Святого Стефана была размещена труба по которой сжатым воздухом передавалось письменное сообщение о замеченном городском пожаре.

    Рисунок 1. Капсула-патрон, для передачи почтовых сообщений

    Само же изобретение пневматической почты связывается с именем изобретателя почтовой марки -- Роуландом Хиллом. В 1836 году он предложил проект перемещения почтовых сообщений через систему подземных труб. Идея была интересной, но воплощена в жизнь она была несколько позже -- в 1854 году в Лондоне. Линия протяженностью 200м соединяла здание фондовой биржи с городским телеграфом. Еще через 8 лет была запущена линия между лондонским вокзалом Истон и почтамтом Кемпден. Надо заметить, что технология была довольно несовершенной, линии постоянно ломались и их вскоре прикрыли. Но это было только началом -- так или иначе проект показал себя с очень хорошей стороны. Все же столь оперативная доставки сообщений была очень привлекательной, и в 1862 год проект был усовершенствован, и в эксплуатацию введены еще несколько линий. Скорость пересылки сообщений по тем временам была едва ли не революционной -- расстояние в 300м патрон с сообщением преодолевал за 10 секунд. Потягаться с такой скорость телеграф, конечно, мог, но оригинал документа или, допустим, несколько монет по нему не перешлешь, да и его использование было далеко не всегда удобно. Так что нет ничего удивительного, что вслед за Англией изобретение начали перенимать и другие страны.

    Рисунок 2. Фотография устройства с помощью которого осуществлялась передача пневмопочты

    В 1875 году в Берлине сеть пневмопочты соединила 15 почтовых отделений, максимальная длина участка составляла 12 километров (контейнер преодолевал этот участок за 35 минут).

    В Париже размах был еще большим -- она объединила все отделения почты и телеграфа, а суммарная длинна линий передачи составляла около 500 км. Были выпущены даже специальные карточки с оплаченным ответом:

    Рисунок 3. Карточка для отправки сообщения пневматической почтой с оплаченным ответом, Франция

    Немалую популярность пневмопочта приобрела в Штатах. В 1892 году в Филадельфии построили первую линию пневмопочты. Опять же -- между зданиями биржи и главного почтамта. Впрочем, ничего удивительного -- для биржи оперативный обмен информации был особенно важен. На доставку каждого патрона из главного почтамта на биржу (расстояние 0,5 англ. мили) затрачивалась 1 минута, а на обратный путь -- 65 секунд. Здесь же еще одна сеть соединяла главный почтамт со станцией Пенсильванской железной дороги. Здесь расстояние в 1 милю преодолевалось за 1 минуту 25 секунд. Вскоре пневмопочта для доставки писем появились в Бостоне и в Нью-Йорке. Трубы диаметром 8 дюймов подведены к столам для штемпелевания и сортировки писем. Патроны вмещали 600 писем. Широко разветвленная сеть пневмопочты, созданная в Нью-Йорке, соединяла главный почтамт и почтовые отделения. Протяженность наибольшего участка составляла 5600 метров, которые почта проходила за 7 минут. Ежедневно по трубам пересылали до 3 тонн корреспонденции.

    Рис. 4. Пневмопочта в издательской конторе, Америка

    Существовала пневмопочта в Италии, во Франции и в Австрии и, да, даже в России. У нас она использовалась на некоторых почтамтах Москвы и Санкт-Петербурга, но действовала только внутри самого здания.

    На грани фантастики

    Кроме прямого назначения предлагались и совершенно фантастические варианты использования такого способа пересылки. Так в 1867 году на Американской Научной Выставке в Нью Йорке был продемонстрирован прототип пневматического метро -- по трубе 32,6 м в длинной, 1,8 м в диаметре сжатым воздухом перемещался своеобразный «вагон», вмещающий 12 пассажиров. Два года спустя В Нью Йорке такой проект был действительно воплощен в жизнь -- линия длинной 95 метров была построена под Бродвеем. Правда просуществовала она всего несколько месяцев и вскоре была закрыта.

    Примерно так это выглядело:

    Рисунок 5. Метро на основе технологии пневмопочты

    Подобных проектов, также как и проектов пневматических лифтов существовало огромное множество, но большинство из них были признаны экономически невыгодными и их разработка была заброшена.

    Но вместе с тем, благодаря им, для людей пневмопочта стала чем-то вроде символа прогресса, и, разумеется, они полагали, что она будет использоваться и развиваться дальше. Жюль Верн в своем «Париже в 20 веке» (1863 год) описывает пневматические поезда, маршруты которых пересекают океаны. А в «Двадцатом веке» (1882) Альберта Робида такие поезда полностью вытеснили привычный железнодорожный транспорт. И подобных примеров можно привести еще огромное множество.

    Да еще стоит вспомнить о том, что, за счет того, что пневмопочта применялась зачастую в крупных корпорациях, помимо прогресса, она стала ассоциироваться с бюрократией. И очень часто с помощью нее демонстрирует бумажную неразбериху, царившую в таких корпорациях.

    Наше время

    Так же, как и большинство стимпанковских технологий, пневмопочта в наше время почти мертва. К 50-м годам XX столетия ее практически полностью вытеснили современные средства обмена информацией. Нет, она используется и сейчас, но исключительно как средство передачи документов в пределах зданий крупных корпораций. К примеру в банках, где требуется пересылка оригиналов документов или в крупных лабораториях для доставки проб на анализ.

    Рисунок 6. Современный терминал пневматического трубопровода

    Осталось только одно место в мире, где сохранилась муниципальная пневматическая система доставки почты -- Прага, где почтовое отделение функционирует уже 1889 года. Под этим городом проложено 55 километров труб, по которым ежемесячно проходит в сумме около 35000 пакетов. Всего в сеть объеденное 46 предприятий: банки, газеты. телеграф, почтовые отделения, крупные корпорации.

    Рис.7 Почтамт в Праге - терминал пневмопочты

    Выгоды использования пневматической почты очевидны: почтовые автомобили в часы пик могут двигаться по Праге со скоростью меньше 20 км/ч. Капсулы «летят» по трубам гораздо быстрее, причем в любое время суток. Ко всему прочему, электричество, потребляемое пневматическими установками, обходится куда дешевле, чем топливо автомобилей.

    Пневматические транспортирующие установки

    Пневматические транспортирующие установки -- транспортирующие машины, предназначенные для перемещения грузов при помощи потока воздуха.

    В зависимости от того, каким способом создаётся поток воздуха, пневматические транспортирующие установки разделяют на два типа:

    установки нагнетательного типа --когда поток воздуха создаётся компрессорами, нагнетающими воздух под давлением 0,4-0,7 МПа;

    установки всасываяющего типа -- когда поток воздуха создаётся вакуум-насосом, всасывающим воздух за счёт разрежения 0,01-0,04 МПа.

    Пневматические транспортирующие установки позволяют транспортировать многие типы сыпучих грузов, для которых не пригодны гидравлические транспортирующие установки: цемент, гипс, алебастр и др. Они применяются, например, на механизированных складах вяжущих материалов на заводах железобетонных изделий. Одним из наиболее известных примеров использования пневматических транспортирующих установок является система транспортирования документов в Государственной библиотеке имени Ленина.

    Пневматические транспортирующие установки позволяют полностью автоматизировать процесс транспортирования и избежать потерь транспортируемых грузов, однако они требуют для своей работы большого расхода электроэнергии и воздуха.

    Рис.8. Схема приёмно отправочной станции в библиотеке имени В.И. Ленина

    1. Тройник

    2. Сигнальная лампа

    3. Электромонтажная плата

    4. Кнопочный номеронабиратель

    5. Датчик отправления

    6. Устройство блокирования занятой линии

    8. Устройство для блокирования неправильно отправляемого патрона

    9. Датчик прибытия

    10. Проходной клапан

    АВМ пневматическая

    Аналоговая вычислительная машина, в которой переменные представлены в виде величин давления воздуха (газа) в различных точках специально построенной сети. Элементами такой АВМ являются дроссели, емкости и мембраны. Дроссели играют роль сопротивлений, могут быть постоянными, переменными, нелинейными и регулируемыми. Пневматические емкости представляют из себя глухие или проточные камеры, давление в которых вследствие сжимаемости воздуха растет по мере их наполнения. Мембраны используются для преобразования давления воздуха. В состав пневматической АВМ могут входить усилители, сумматоры, интеграторы, функциональные преобразователи и множительные устройства, которые соединяются между собой при помощи штуцеров и шлангов. Пневматические АВМ уступают в быстродействии электронным. В среднем подвижные элементы такой АВМ имеют время срабатывания около десятой доли миллисекунды, следовательно они могут пропускать частоты порядка 10 кГц. Такие АВМ отличаются значительными погрешностями, поэтому применяются там, где нельзя применять другие типы вычислительных машин: во взрывоопасных средах, в средах с высокими температурами, в автоматических системах химического производства. Из-за низкой стоимости и высокой надежности такие АВМ также применяют в металлургии, теплоэнергетике, газовой промышленности и т. п.

    В 1960-х годах разрабатывались для получения средства дискретных вычислений с высокой радиационной стойкостью. Были разработаны элементы, выполняющие основные логические операции и элементы памяти без механических подвижных элементов.

    Такие элементы очень долговечны, поскольку в них практически отсутствуют подвижные части, и, как следствие, нечему ломаться. В случае засорения каналов логические матрицы легко разбираются и промываются. Работает пневмокомпьютер от промышленной пневмосети. Логические матрицы легко штампуются на термопласт-автоматах из пластика. Для особых случаев матрица может быть изготовлена из тугоплавкой керамики, отлита из чугуна или другого сплава.

    Сейчас пневмокомпьютеры используются в отраслях промышленности, где требуется повышенная вибрационная стойкость, работоспособность в очень широком диапазоне температур или требуется управление пневматическими силовыми устройствами. В последнем случае устраняется необходимость в преобразователях электрического сигнала в перемещение (электро-пневмопреобразователь + позиционер). Это -- роботы и автоматика, работающие в металлургии, в горнорудной промышленности. Известны случаи управления элементами авиационных двигателей, автоматикой ракетных систем, силовыми приводами вертолетов и самолетов.

    Существует также целая категория производств, агрегатов и установок, где применение электричества, даже самых низких напряжений, очень нежелательно. Это химия органических соединений, нефтеперегонные заводы, подземная добыча угля и руды. Они до сих пор широко используют пневматическую автоматику.

    Преимущества пневматики

    1. Экологическая чистота

    a. Результатом любой утечки из пневматической системы, использующей воздух, будет тот же атмосферный воздух.

    2. Доступность

    a. Атмосферный воздух всегда доступен на Земле

    3. Надёжность

    a. Пневматические системы обычно имеют долгие сроки службы и требуют меньшего обслуживания, чем гидравлика.

    4. Хранение

    a. Сжатый газ можно долго хранить в баллонах, позволяя использовать пневматику без электроэнергии.

    5. Безопасность

    a. Меньшая пожароопасность по сравнению с гидравликой на масле.

    b. Пневматические машины из-за лучшей сжимаемости воздуха лучше защищены от перегрузок, чем гидравлика.

    6. Технологичность

    a. Пневматический механизм не требует дополнительного отвода. Отработанный воздух можно выпустить в атмосферу. Компрессор тоже может брать воздух непосредственно из атмосферы.

    b. Пневматические машины легко разработать на базе обычных цилиндров и поршней.

    c. Пневматические машины легко изготовить, поскольку пневматика обычно не требует деталей высокой точности.

    7. Удельные показатели

    a. Пневматическая система легче, чем гидравлика, при таких же давлениях.

    b. Удельная мощность, передаваемая по одинаковым трубам, у пневматики выше, чем у гидросистем, а потери меньше.

    c. У пневмоприводов выше скорость, чем у гидравлических.

    Пневматический привод

    Пневматический привод (пневмопривод) -- совокупность устройств, предназначенных для приведения в движение машин и механизмов посредством энергии сжатого воздуха. Обязательными элементами пневмопривода являются компрессор (генератор пневматической энергии) и пневмодвигатель.

    Рисунок 9. Поворотный пневмоцилиндр

    Пневмопривод, подобно гидроприводу, представляет собой своего рода «пневматическую вставку» между приводным двигателем и нагрузкой (машиной или механизмом) и выполняет те же функции, что и механическая передача (редуктор, ремённая передача, кривошипно-шатунный механизм и т. д.).

    Основное назначение пневмопривода, как и механической передачи, -- преобразование механической характеристики приводного двигателя в соответствии с требованиями нагрузки (преобразование вида движения выходного звена двигателя, его параметров, а также регулирование, защита от перегрузок и др.).

    В общих чертах, передача энергии в пневмоприводе происходит следующим образом:

    Приводной двигатель передаёт вращающий момент на вал компрессора, который сообщает энергию рабочему газу.

    Рабочий газ после специальной подготовки по пневмолиниям через регулирующую аппаратуру поступает в пневмодвигатель, где пневматическая энергия преобразуется в механическую.

    После этого рабочий газ выбрасывается в окружающую среду, в отличие от гидропривода, в котором рабочая жидкость по гидролиниям возвращается либо в гидробак, либо непосредственно к насосу.

    В зависимости от характера движения выходного звена пневмодвигателя (вала пневмомотора или штока пневмоцилиндра), и соответственно, характера движения рабочего органа пневмопривод может быть вращательным или поступательным. Пневмоприводы с поступательным движением получили наибольшее распространение в технике.

    Пневмоприводы с поступательным движением

    По характеру воздействия на рабочий орган пневмоприводы с поступательным движением бывают:

    · двухпозиционные, перемещающие рабочий орган между двумя крайними положениями;

    · многопозиционные, перемещающие рабочий орган в различные положения.

    По принципу действия пневматические приводы с поступательным движением бывают:

    · одностороннего действия, возврат привода в исходное положение осуществляется механической пружиной;

    · двухстороннего действия, перемещающие рабочий орган привода осуществляется сжатым воздухом.

    По конструктивному исполнению пневмоприводы с поступательным движением делятся на:

    · поршневые, представляющие собой цилиндр, в котором под воздействием сжатого воздуха либо пружины перемещается поршень (возможны два варианта исполнения: в односторонних поршневых пневмоприводах рабочий ход осуществляется за счёт сжатого воздуха, а холостой за счёт пружины; в двухсторонних -- и рабочий, и холостой ходы осуществляются за счёт сжатого воздуха);

    · мембранные, представляющие собой герметичную камеру, разделённую мембраной на две полости; в данном случае цилиндр соединён с жёстким центром мембраны, на всю площадь которой и производит действие сжатый воздух (также, как и поршневые, выполняются в двух видах -- одно- либо двухстороннем).

    Так же есть:

    · Сильфонные - применяются реже. Практически всегда одностороннего действия: усилие возврата может создаваться как упругостью самого сильфон, так и с использованием дополнительной пружины.

    · В особых случаях (когда требуется повышенное быстродействие) применяют специальный тип пневмоприводов -- вибрационный пневмопривод релейного типа.

    Одно из применений пневматических приводов является использование их в качестве силовых приводов на пневматических тренажерах.

    Принцип действия пневматических машин

    Многие пневматические машины имеют свои конструктивные аналоги среди объёмных гидравлических машин. В частности, широко применяются аксиально-поршневые пневмомоторы и компрессоры, шестерённые и пластинчатые пневмомоторы, пневмоцилиндры

    Типовая схема пневмопривода

    Воздух в пневмосистему поступает через воздухозаборник.

    Фильтр осуществляет очистку воздуха в целях предупреждения повреждения элементов привода и уменьшения их износа.

    Компрессор осуществляет сжатие воздуха.

    Поскольку, согласно закону Шарля, сжатый в компрессоре воздух имеет высокую температуру, то перед подачей воздуха потребителям (как правило, пневмодвигателям) воздух охлаждают в теплообменнике (в холодильнике).

    Чтобы предотвратить обледенение пневмодвигателей вследствие расширения в них воздуха, а также для уменьшения корозии деталей, в пневмосистеме устанавливают влагоотделитель.

    Воздухосборник служит для создания запаса сжатого воздуха, а также для сглаживания пульсаций давления в пневмосистеме. Эти пульсации обусловлены принципом работы объёмных компрессоров (например, поршневых), подающих воздух в систему порциями.

    В маслораспылителе в сжатый воздух добавляется смазка, благодаря чему уменьшается трение между подвижными деталями пневмопривода и предотвращает их заклинивание.

    В пневмоприводе обязательно устанавливается редукционный клапан, обеспечивающий подачу к пневмодвигателям сжатого воздуха при постоянном давлении.

    Рисунок 10. Типовая схема пневмопривода

    1. воздухозаборник;

    2. фильтр;

    3. компрессор;

    4. теплообменник (холодильник);

    5. влагоотделитель;

    6. воздухосборник (ресивер);

    7. предохранительный клапан;

    8. Дроссель;

    9. маслораспылитель;

    10. редукционный клапан;

    11. дроссель;

    12. распределитель;

    13. пневмомотор;

    И манометр - М

    Распределитель управляет движением выходных звеньев пневмодвигателя.

    В пневмодвигателе (пневмомоторе или пневмоцилиндре) энергия сжатого воздуха преобразуется в механическую энергию.

    Достоинства пневмопривода

    1. в отличие от гидропривода -- отсутствие необходимости возвращать рабочее тело (воздух) назад к компрессору;

    2. меньший вес рабочего тела по сравнению с гидроприводом (актуально для ракетостроения);

    3. меньший вес исполнительных устройств по сравнению с электрическими;

    4. возможность упростить систему за счет использования в качестве источника энергии баллона со сжатым газом, такие системы иногда используют вместо пиропатронов, есть системы, где давление в баллоне достигает 500 МПа;

    5. простота и экономичность, обусловленные дешевизной рабочего газа;

    6. быстрота срабатывания и большие частоты вращения пневмомоторов (до нескольких десятков тысяч оборотов в минуту);

    7. пожаробезопасность и нейтральность рабочей среды, обеспечивающая возможность применения пневмопривода в шахтах и на химических производствах;

    8. в сравнении с гидроприводом -- способность передавать пневматическую энергию на большие расстояния (до нескольких километров), что позволяет использовать пневмопривод в качестве магистрального в шахтах и на рудниках;

    9. в отличие от гидропривода, пневмопривод менее чувствителен к изменению температуры окружающей среды вследствие меньшей зависимости КПД от утечек рабочей среды (рабочего газа), поэтому изменение зазоров между деталями пневмооборудования и вязкости рабочей среды не оказывают серьёзного влияния на рабочие параметры пневмопривода; это делает пневмопривод удобным для использования в горячих цехах металлургических предприятий.

    Недостатки пневмопривода

    2. нагревание и охлаждение рабочего газа в процессе сжатия в компрессорах и расширения в пневмомоторах; этот недостаток обусловлен законами термодинамики, и приводит к следующим проблемам:

    3. возможность обмерзания пневмосистем;

    4. конденсация водяных паров из рабочего газа, и в связи с этим необходимость его осушения;

    5. высокая стоимость пневматической энергии по сравнению с электрической (примерно в 3-4 раза), что важно, например, при использовании пневмопривода в шахтах;

    6. ещё более низкий КПД, чем у гидропривода;

    7. низкие точность срабатывания и плавность хода;

    8. возможность взрывного разрыва трубопроводов или производственного травматизма, из-за чего в промышленном пневмоприводе применяются небольшие давления рабочего газа (обычно давление в пневмосистемах не превышает 1 МПа, хотя известны пневмосистемы с рабочим давлением до 7 МПа -- например, на атомных электростанциях), и, как следствие, усилия на рабочих органах значительно мемньшие в сравнении с гидроприводом). Там, где такой проблемы нет (на ракетах и самолетах) или размеры систем небольшие, давления могут достигать 20 МПа и даже выше.

    9. для регулирования величины поворота штока привода необходимо использование дорогостоящих устройств -- позиционеров.

    Список используемой литературы

    1. http://en.wikipedia.org/

    2. http://ru.wikipedia.org/

    3. http://steampunker.ru

    Размещено на Allbest.ru

    ...

    Подобные документы

      Специфика создания справочно-правовых систем, обзор их рынка в России. Преимущества использования справочно-правовой системы "КонсультантПлюс", достоинства, примеры решения поисковых задач с ее помощью, преимущества использования для разных специалистов.

      научная работа , добавлен 08.06.2010

      Простейшая GPSS-модель, имитирующая работу СМО с однородным потоком заявок и позволяющая получить представление об операторах GPSS World. Стандартный отчет, формируемый автоматически по завершении моделирования и содержащий результаты моделирования.

      лабораторная работа , добавлен 17.09.2014

      Общее описание системы автоматизации контроля дорожным движением на перекрестке. Установка кабельной коммуникации, смотровых устройств. Выбор трубопроводов и их прокладка. Правила безопасности труда при строительстве телефонной кабельной канализации.

      курсовая работа , добавлен 20.08.2015

      Топологии компьютерных сетей. Организация взаимодействия компьютеров. Классификация компьютерных сетей по территориальной распространенности. Услуги службы голосовая "почта". Характеристика системы Видеотекс. Недостатки и достоинства одноранговых сетей.

      презентация , добавлен 12.09.2014

      Сущность и история развития РУП "Белпочта". Услуги, предоставляемые подразделениями связи. Роль средств коммуникации в экономическом развитии страны. Почтовая связь как неотъемлемая часть производственной и социальной инфраструктуры Республики Беларусь.

      реферат , добавлен 17.05.2016

      Задачи и основные параметры радиолокационной станции системы управления воздушным движением. Особенности функциональных узлов РЛС "Скала-М". Потенциально опасные и вредоносные производственные факторы, организация рабочих мест диспетчерской службы.

      курсовая работа , добавлен 05.03.2011

      Конструкция и принцип действия датчиков перемещения различных типов: емкостных, оптических, индуктивных, вихретоковых, ультразвуковых, магниторезистивных, магнитострикционных, потенциометрических, на основе эффекта Холла. Области использования приборов.

      реферат , добавлен 06.06.2015

      Проектирование бесконтактного аппарата на примере электромагнитного датчика линейного перемещения. Расчет обмоток и сердечника, конструирование датчиков на основе линейно регулируемых дифференциальных трансформаторов, исследование их рабочих режимов.

      курсовая работа , добавлен 11.06.2015

      Звукозапись как процесс сохранения воздушных колебаний в заданном звуковом диапазоне на носителе с помощью специальных приборов. История попыток создания аппаратов, воспроизводящих звуки. Механические музыкальные инструменты, воспроизводящие мелодии.

      реферат , добавлен 10.06.2014

      Конструкция преобразователя тока блока питания системы кондиционирования воздуха. Система распределения питания. Методы подавления помех в системе распределения питания при проектировании многослойных печатных плат. Описание модернизированной платы.

    Идея перемещать небольшие грузы внутри полых трубок посредством сжатого воздуха родилась в умах людей очень давно. Еще древнегреческий мыслитель и инженер Герон Александрийский описал этот способ доставки корреспонденции в своем трактате «Механика». Система пневмопочты, придуманная древним греком, была весьма оригинальной для своего времени идеей, но технический уровень античности не позволил реализовать ее на практике.

    Навигация:

    Первая реально работающая пневмопочта была сконструирована гораздо позже, в конце семнадцатого века, а в повсеместный обиход этот способ доставки корреспонденции вошел спустя еще сто пятьдесят лет. Первая действующая станция пневмопочты начала работать в тысяча восемьсот пятьдесят третьем году в Лондоне, а уже к концу девятнадцатого века подобные системы работали во многих европейских столицах – Вене, Париже, Берлине. Еще большее развитие системы пневматической почты получили в начале прошлого века, когда открылись станции в Глазго, Ливерпуле, Манчестере, Филадельфии и других крупных городах. В двадцатые годы появились подобные системы и в нашей стране. Первая в СССР пневмопочта заработала в Москве и Ленинграде.

    Сжатым воздухом – пли, или как работает пневмопочта

    Распространение получили два вида пневмопочты, работающие на различных принципах. В первом случае капсула пневмопочты, внутрь которой вложен необходимый документ, приводится в движение с помощью сжатого воздуха, нагнетаемого специальным компрессором в трубопровод. С тыльной стороны капсулы создается избыток давления, который толкает ее вперед. Во втором случае, наоборот, давление в трубе перед пневмопосылкой многократно снижается мощной помпой, выкачивающей воздух из системы. Использование первого алгоритма работы позволяет сообщать капсулам более высокую скорость движения, однако создание в трубе давления, многократно превышающего атмосферное, предъявляет повышенные требования к прочности трубы для пневмопочты. На сегодняшний день используются комбинированные системы, которые сначала создают разрежение, а потом – избыточное давление в трубах.

    Пересылка отправления в системе пневматической почты включает в себя четыре фазы. Первая фаза – загрузка капсулы в станцию отправителя. Далее пневмокапсула начинает двигаться от станции отправления к компрессору благодаря создаваемому последним разряжению. От компрессора к станции получателя движение происходит под воздействием нагнетаемого компрессором высокого давления. Далее станция получателя принимает и выдает капсулу.

    Перед прибытием пневмокапсулы в пункт назначения скорость ее движения замедляется выпуском противодействующего потока воздуха. Это позволяет достичь плавного торможения посылки и избежать ее повреждения в результате слишком сильного удара на финише.

    Путь длиной в полтора века. Современные системы пневмопочты

    Разумеется, развитие электронных систем хранения и передачи информации значительно сократило использование подобных систем. Далеко не в любом здании целесообразно и удобно производить монтаж пневмопочты, так что уже с семидесятых годов ХХ века значительная часть пользователей начала отдавать предпочтение цифровым сетям. Даже весьма медленные и несовершенные компьютерные сети второй половины прошлого века оказались во многом удобнее в использовании, да и регламентное обслуживание пневмопочты, выполнявшееся в те годы достаточно часто, мешало нормальному рабочему процессу.

    Однако остались сферы деятельности человека, в которых электронная почта не смогла заменить пневматическую и по сей день. С помощью email не отправишь пробу новой плавки в лабораторию, не перешлешь деньги из банковского хранилища в кассу, ведущую обслуживание клиентов. Востребованапневмопочта +в медицине, особенно если нужно быстро транспортировать лабораторный материал, пакеты с донорской кровью или трансплантатами, либо медицинские препараты. Активно используется пневмопочта +в сбербанке, в современных супермаркетах, в крупных учреждениях, работающих с бумажными экземплярами документов.

    Различаются современные системы пневмопочты не только по отрасли применения, но и по своим конструкционным особенностям. Производятся однолинейные и многолинейные системы, которые бывают однонаправленными и двунаправленными. Однолинейные двунаправленные пневмосистемы позволяют осуществить пересылку капсулы между двумя станциями в любом направлении. Однонаправленные системы обычно применяются в случае, когда нужно соединить несколько отправляющих станций с одной принимающей. Из-за их конструктивных особенностей обратная отправка пневмокапсулы невозможна. Многолинейные системы позволяют как принимать, так и отправлять пневмопосылки множеству получателей, и состоят из нескольких параллельных пневматических труб со всем необходимым оборудованием, управляемых общим процессором.

    Современные системы пневматической почты достаточно компактны, имеют программное управление высокой степени автономности, не производят лишнего шума. Станции приема и отправки пневмокапсул обычно автоматизированы, а все процессы внутри системы отображаются на интерактивном мониторе управления. Управляет всем специальное программное обеспечение, оптимизированное под особенности конкретной пневмосистемы. Для облегчения пользования и унификации большинство программ управления работают под ОС Windows.

    «Глазами» центрального компьютера являются многочисленные датчики, отслеживающие посылку во время ее перемещения по пневматическим трубам и посылающие тревожный сигнал в случае возникновения внештатной ситуации. Они же помогают отследить посылку в случае ошибки, допущенной отправителем при указании станции получателя пневматической капсулы.

    Аэродинамика конверта: Капсулы для пневмопочты

    Для пересылки документов и небольших грузов по пневматическим системам используются специальные капсулы, которые сконструированы таким образом, чтобы исключить повреждение вложения. Обычно капсула изготавливается в виде цилиндра с полостью для грузов внутри. Современные пневмокапсулы производятся из ударопрочного пластика. Диаметр такой капсулы лишь немногим меньше диаметра пневматической трубы. Это позволяет затрачивать меньше энергии на транспортировку – уменьшается давление, необходимое для движения груза в системе. С другой стороны, зазоры между капсулой и стенками трубы достаточны, чтобы исключить застревание капсулы в процессе транспортировки. В зависимости от сферы использования, внутреннее пространство капсулы оснащается различными штативами и площадками для крепления вложения, а также специальными вставками, дополнительно оберегающими хрупкие грузы. Обычно их диаметр составляет 110 сантиметров, а масса заполненной грузом капсулы редко превышает один килограмм.

    Наследники котлов Папена: современные воздуходувки для пневмопочты

    Прогресс в проектировании и производстве пневмосистем не стоит на месте — современная пневмопочта, оборудование которой управляется сложными электронными микроконтроллерами, гораздо надежнее своих механических предшественников. Не менее надежными стали и нагнетающие давление в систему вихревые воздушные насосы, в обиходе именующиеся воздуходувками.

    Современные воздуходувки проектируются и изготавливаются с учетом трех основных требований, предъявляемых заказчиками. Эти машины должны быть весьма экономичными при достаточно высокой производительности, иметь длительную межремонтную наработку, и занимать не слишком много места. В связи с этим передовые производители используют преимущественно вихревыми компрессорами. Именно такие воздуходувки использует пневмопочта hanter. В сравнении с устаревшими поршневыми системами, такие компрессоры потребляют содержать гораздо меньше движущихся частей, что позволяет не только снизить потребление электроэнергии, но и увеличить ресурс механизма. Благодаря этому работа пневмопочты становится более надежной и стабильной.

    Сто лет назад по трубам под мостовыми Манхэттена со скоростью 35 миль в час летели капсулы с почтой - так работала система Mailpipe - нью-йоркская пневматическая почта

    Нью-йоркская пневмопочта оперативно доставляла корреспонденцию в почтовые отделения в любое время, в любую погоду, минуя дорожные пробки

    Около 27 миль стальных труб были проложены под землёй от Бэттери-Парк до Гарлема и обратно через Таймс-сквер, вокзал Гранд-сентрал и Главпочтамт. Восьмидюймовые трубы были проложены на глубине 1-3 метров в две нитки - одна для передачи, другая для приёма.

    В центральном отделении почта сортировалась, штемпелевалась, укладывалась в цилиндрические контейнеры-капсулы и отправлялась в трубу.

    Компрессор нагнетал в трубу воздух, который и гнал капсулу до пункта назначения. Тот путь, который по поверхности занимал сорок минут, контейнер Mailpipe пролетал за семь. Каждая капсула вмещала до 600 писем, общая масса доставленных по городу почтовых отправлений доходила до 3 тонн в сутки.

    Вспоминает Натан Халперн, ветеран почтовой службы: «Я ещё помню те контейнеры, которые выскакивали из труб. Они прибывали примерно раз в минуту и были слегка тёплыми, в смазке»

    Не все отправления пользовались такой привилегией - в первую очередь под землёй путешествовали письма первого класса, остальные могли отправить по старинке - конным фургоном.

    Строительство нью-йоркской Mailpipe началось в конце 1890-х годов, в 1898-м она была введена в строй. Главный почтмейстер США Чарльз Эмори Смит предсказывал тогда, что в один прекрасный день он оснастит пневмопочтой каждую квартиру. Энтузиазм был так велик, что на рубеже XIX-XX веков было даже несколько предложений по прокладке труб пневмопочты между Америкой и Европой.

    Погубил пневмопочту автомобиль, а прикончили светофоры. Автофургон оказался чуть медленнее капсулы, но вмещал куда больше писем и был много дешевле в эксплуатации. Выявились и другие недостатки Mailpipe - например, если почтовое отделение переезжало, то приходилось вскрывать мостовую и перекладывать трубы заново

    Тем не менее, в Нью-Йорке система продержалась довольно долго (в правой части снимка приёмное устройство пневмопочты)

    Строительство Нью-Йоркской системы трубопроводной почты началось в начале 1890-х годов и завершилось в 1898 г. Только на Манхэттене протяженность ее трубопроводов достигала около 27 миль, охватывая район от Бэттери-Парка до Гарлема. Стоимость системы достигла 4 миллионов долларов, основным подрядчиком была компания Tubular Dispatch Company, которая построила подобную систему в Филадельфии (послужившую «прототипом» для Нью-Йоркской) еще в 1893 году.

    На Манхэттене система проходила также через Таймс-Сквер, железнодорожный вокзал Грэнд-Сентрал Терминал и главный офис Почтовой Службы вблизи Пенсильванского вокзала (Penn Station). От здания Мэрии (City Hall station) трубопроводы тянулись дальше через Бруклинский мост в главпочтамт Бруклина, на другом берегу Ист-Ривер.

    Система обеспечивала доставку почты более быструю, чем почтовые кареты и первые автомобили. Ее преимущества становились особенно очевидны в суровые снежные зимы с заносами, как в 1914 г. - когда движение на улицах останавливалось, бизнес на Манхэттене мог продолжать работать бесперебойно.
    Капсулы с почтой и посылками, похожие внешне на тяжелые артиллерийские снаряды, длиной до 2 футов (61 см), скользили под землей по 8-дюймовым трубопроводам под давлением сжатого воздуха, независимо от пробок на улицах и погодных условий, с интервалами примерно в минуту.

    Трубопроводы обычно проходили в 2 параллельные линии (для пересылки «туда и обратно») на глубине от 4 до 12 футов под землей, кое-где они использовали существующие туннели Нью-Йоркской подземки - проходя в них параллельно железнодорожным линиям. Сеть труб быстро расширилась, достигнув в крупных городах Восточного побережья 56 миль - со средней интенсивностью работы 200 тысяч писем в час на линию. Такую же систему стала использовать и компания Western Union, соединив таким образом свой центральный офис с отделениями.

    Разумеется, такая громадная и сложная пневмосистема требовала достаточно сложной инфраструктуры (компрессорных станций и другого оборудования) и качественного обслуживания, и соответственно - высоких затрат (до 17 тыс долларов в год на милю!). Для регулярной смазки в систему периодически запускались специальные «смазывающие» перфорированные капсулы, заполненные маслом, которое постепенно вытекало из них в процессе движения.

    На каждую почтовую капсулу наносилась маркировка, обеспечивающая правильную доставку. Обычная почта доставлялась системой в течение не более 3 часов, «приоритетная» - одного часа. Репутация и надежность системы были исключительно высоки - настолько, что в первые годы 20 века вполне серьезно обсуждалась идея прокладки подобной системы по дну Атлантики, подобно трансатлантическому кабелю, чтобы соединить США с Европой.

    Однако развитие автомобилизма и автопромышленности очень скоро нанесло системе пневмопочты смертельный удар. Уже у 1918 году стремительная автомобилизация страны (и почтовой службы) привела к тому, что эксплуатация системы в некоторых городах стала невыгодной.
    К тому же если, например, почтамт или станция системы в процессе развития города должны были переехать, это означало необходимость раскопать улицы, аккуратно демонтировать всю систему и вновь аккуратно смонтировать ее на новом месте (опять-таки с земляными работами и всеми соответствующими расходами и неудобствами).

    В Нью-Йорке, с его высокой плотностью населения и бизнесов, система имела большую востребованность и соответственно продержалась дольше - ее эксплуатация продолжалась до 1 декабря 1953 года.

    Но идея не умерла!

    Evacuated Tube Transport - технология перемещения по вакуумной трубе (ETT) - новая разновидность системы транспортировки — безопасная, невероятно быстрая и энергосберегающая

    Представьте две трубы под землей или над землей, идущие в двух направлениях. В этих трубах нет воздуха, значит нет сопротивления. Пассажирские кабины, похожие на кабины в самолете (рассчитанные на 2-8 человек), перемещаются по трубе на тонких стальных колесах или на магнитной подвеске (маглев) практически без трения. Значительная часть энергии, используемой, чтобы разогнать капсулу, возвращается в сеть, когда капсула начинает «торможение», так как это осуществляется с помощью обычного электрического двигателя/генератора.

    Благодаря эффективности ETT, транспортировка будет довольно дешевой, менее четверти от средней платы за проезд обычным способом, включая авиапутешествия. Если продолжить сравнивать ETT с самолетом, стоит упомянуть о безопасности - автоматизированный вакуумный поезд фактически исключает возможности столкновения. Кроме того, ETT работает независимо от погодных условий.

    ETT имеет преимущества с точки зрения экологии. Строительство ETT приносит на 95% меньше вреда окружающей среде, чем строительство шоссе, так как при этом используется значительно меньше ресурсов. За один километр вакуумный поезд, по расчетам, выбрасывает от 0% до 2% от парниковых газов, которые выходят с выхлопами автомобилей и самолетов. Вакуумный поезд никак не повредит флоре или фауне, так как трубы не будут ощутимо пересекаться с природой - перерезать леса, блокировать естественные водохранилища, препятствовать свободной миграции животных и т. д. Система ETT долговечна, таким образом, требуется минимальное обслуживание, и, следовательно, производственные отходы также малы. ETT может использовать возобновляемые, не загрязняющие окружающую среду источники энергии - солнечные, ветряные или гидроэлектрические.

    Поездка на ETT будет похожа на приятное путешествие в очень тихом самолете. В зависимости от преодолеваемого расстояния, скорость ETT может достигать 600 км/ч для междугородних поездок, если речь идет о международном путешествии, скорость может развиваться до 6500 км/ч, что позволило бы добраться из Вашингтона в Пекин за 2 часа. Не понадобится часами стоять в огромном аэропорте, терминалы будут представлять собой аккуратные маленькие станции.

    Инженеры предлагают строительство маленькой тестовой системы ETT для перевозки документов, а затем можно приступить к разработке системы для транспортировки людей. Строительство подобной испытательной системы в пределах пары километров в длину заняло бы приблизительно 6 месяцев и стоило бы меньше миллиона долларов.

    Специалисты говорят, что стоимость ETT может составить приблизительно 50% от стоимости четырехполосной автомагистрали, а стоимость обслуживания труб составит менее 20%. Вместимость ETT превысит вместимость автомагистрали на 8 полос в каждом направлении. Вакуумный поезд будет поглощать 0,2% энергии, которая затрачивается на обеспечение работы автомобилей и самолетов.

    Так же как поезда и самолеты, ETT будут грузовыми и пассажирскими.

    После того как система будет окончательно разработана и испытана, строительство быстро распространится по всему миру. Так как система рациональна в использовании энергии и материалов, путешествие будет иметь низкую стоимость, и значит будет популярно. В конечном счете, все в мире смогут использовать технологию.

    В 1900 году менее одного процента всех людей в мире имели возможность увидеть автомобиль. К 1935 году девяносто девять процентов средств передвижения в пределах городов стали составлять автомобили. Сегодня люди более привычны к изменениям в области технологий. Вполне возможно, что все мы сможем наслаждаться дешевым кругосветным путешествием меньше чем через 10 лет.

    Высока вероятность того, что первая вакуумная дорога будет построена в Китае. Дэрил Остер, владелец компании ET3.com, которая занимается проектированием систем скоростного сообщения, уже давно сотрудничает с учеными из Китая. Остер продает лицензии, стоимостью в 100 долларов, которые позволяют использовать его интеллектуальную собственность. Эта система, по мнению автора, привлечет всех заинтересованных и позволит быстрее осуществить разработку вакуумного поезда..

    Пневмопочта – это одна из наиболее применяемых систем, которая нашла свое место практически во всех отраслях, которые хоть каким-то образом связаны с транспортировкой различной продукции.

    Зачастую, подобные системы используются в банках, или же обычных высокоэтажных сооружениях, которые предназначены для государственных деятелей или же каких-либо отделений для отдельных предприятий.

    Если сказать проще, то по сути, пневмопочта – эта система, которая востребована в тех отраслях, где нужно постоянное перемещение определённых материалов. Это могут быть как документы, важные аукционные бумаги или же деньги. Все это требует быстрого и надежного перемещения, с чем отлично справляется пневмопочта.

    Пневмопочта – состоит из множества труб, которые соединяются друг с другими в определенных точках. Зачастую, подобные системы применяются в крупных сооружениях, или же в качестве связи между несколькими сооружениями. При желании, можно также проложить и магистральные трубы между целой сетью зданий. Подобная процедура сделает ведение бизнеса более эффективным, так как проблем с передачей документов возникать уже явно не будет.

    Установка подобной системы на производстве, сможет вам гарантировать то, что распределение труда будет более эффективным. Особенно нужной подобная система является при транспортировки огромного количества ценных бумаг, денег и конечно же документов. Именно это и стало главной причиной столь большого интереса со стороны бизнес деятелей.

    Сейчас мы рассмотрим 4 главных этапа рабочего процесса пневмопочты:

    • Первоначальная загрузка капсулы определенным грузом. Далее он перенаправляется в специальный сектор, в которой происходит перенаправление всех капсул по определенным точкам.
    • Следующий этап заключается в передвижении капсулы прямиком к компрессору. Данный элемент в свою очередь, распределяет поток капсул и направляет их к конечным точкам.
    • После того, как предыдущий этап был пройден, капсула покидает границы внешнего компрессора и отправляется прямиком к станции, где адресат сможет забрать все содержимое капсулы.
    • Уже после всего вышесказанного, пользователь может получить свою капсулу, и изъять из неё все содержимое, отправив уже пустую капсулу обратно к компрессору

    Но есть в этом процессе и немалое количество нюансов, о которых также важно помнить. Одним из таковых можно назвать заполнение анкеты адресата. Делается это для того, чтобы капсула отправилась прямиком к нужному человеку. Если же вы не проделаете то, что от вас требует система, отправить капсулу у вас попросту не получится.

    Следующая временная остановка капсулы состоится у самого компрессора, в котором происходит постоянное распределение капсул по нужным точкам. После этого, стрелки занимают определенные направления, что впоследствии позволяет контролю одобрить дальнейшее движение капсулы по механизму.

    Не стоит также забывать и о специальных оптических датчиках. Они же предназначены для того, чтобы следить за тем, двигаются ли капсулы по стрелкам внутри системы. Уже после того, как капсула пройдёт все положенные стрелки, она сможет добраться прямиком до адресата.

    Пневмопочта – это система, которая по своей структуре действительно уникальная, и имеет немалое количество скрытых нюансов. Можно без каких-либо сомнений сказать, что абсолютно каждый процесс, происходящий внутри пневмопочты, находится под присмотром датчиков, которые реагируют на любой сбой в работе системы.

    Еще до того момента, как произойдет отправка. Датчики должны тщательно отследить маршрут и провести анализ времени, за которое капсула должна добраться к адресату. Если же за этот период капсула не пребывает к нужной точке, система автоматически производит блокировку всех стрелок. Следующим этапом является быстрая диагностика, которая позволяет найти тот канал, в котором остановилась капсула.

    Продувка – это еще одна важная процедура, которая нужна как раз в подобных случаях. По сути – это обычное всасывание воздуха в системе, которое позволяет вернуть все капсулы в точку нахождении компрессора. После того, как датчики увидят, что все капсулы на месте, работа пневмопочты сможет продолжаться в штатном режиме.

    Как работает пневмопочта

    Если затрагивать тему конструкции пневмопочты, то можно заметить в ней огромное количество интересных элементов:

    • Компрессор
    • Маршрутные стрелки для движения по станциям
    • Магистральный трубопровод
    • Пульт управления системой
    • Источник стабилизации системы питания
    • Блок для надежного управления компрессором
    • Центральный контроллер

    Все вышеперечисленные элементы располагаются поблизости от подвесного потолка. Это позволяет им находиться в наиболее комфортном и безопасном месте, не мешая рабочему процессу.

    Одним из важнейших элементов в системе можно назвать компрессоры двойного действия. Эта часть системы берет на себя создание давления внутри системы, что является весьма трудоемкой задачей. Важно осознавать, что именно от того, как работает компрессор, зависит уровень и качество производительности системы пневмопочты.

    Байкапс – это еще один важный компонент, который нужен для торможения капсулы в конечной точке. Данный механизм практически не поддается поломкам, из-за чего в подобных системах используют именно его.

    Центральный контроллер – это элемент, который служит в роли некого регулировщика. Именно центральный контроллер отслеживает, все главные процессы и делает их наиболее качественными. Важно понимать, что наличие контроллера в системе – это обязательное условие, так как без него, произведение процесса транспортировки становится невозможным.

    Маршрутные стрелки – это еще один компонент, который прямым образом влияет на перемещение материалов внутри системы. Сами стрелки служат чем-то в роли указателя, который перенаправляет капсулы по определенным отсекам. Из того можем сделать вывод, что роль данного элемента в подобных системах действительно велика.

    Системы пневмопочты

    На данный момент, на рынке вакуумной техники можно увидеть огромное количество разновидностей пневмопочты. Среди всего ассортимента можно выбрать как более дорогостоящие системы, так и вполне бюджетные варианты для эффективного использования.

    Так как ранее мы уже говорили об эффективности систем пневмопочты. Сейчас мы попытаемся рассмотреть её главные преимущества:

    • Высокая степень надежности системы
    • Качественное распределение рабочего времени
    • Высокая скорость передачи капсул
    • Огромный потенциал дальнейшего развития подобных систем
    • Возможность соединения нескольких зданий подобной системой
    • Наличие функции отправки специализированных капсул
    • Функция переадресации

    Капсулы для пневмопочты

    Если ранее мы в основном говорили о самих системах пневмопочты. То сейчас речь пойдет о капсулах. Без сомнений – капсулы можно назвать одним из важнейших элементов подобных систем. Ведь именно от них зависит, быстро ли придут деньги, документы или же какие-то другие принадлежности.

    Важно изначально осознавать, что от стоимости капсул также зависит то, с какой скоростью будет производиться передача документов.

    Сейчас мы рассмотрим наиболее надежные и качественные модели капсул для пневмопочты:

    • Swivel LID CARRIER NW110
    • FLIP-TOP CARRIER NW110K/L
    • SWIVEL LID NW3 inch
    Воздуходувки для пневмопочты

    Воздуходувка – это одна из категорий оборудования, которая активно используется в самых разных отраслях. В данной системе она играет роль главного создателя вакуума. Немало также зависит от того, насколько эффективным будет процесс образования давления внутри воздуходувки.

    Мало кого удивит тот факт, что воздуходувка – это по-настоящему многофункциональное устройство, которое действительно играет весомую роль в работе множества систем. В данной системе он играет роль образователя нужного давления, что в итоге приводит к образованию вакуума внутри системы.

    Вакуум – это один из ключевых компонентов в данной системе. Ведь без наличия нужного уровня вакуума, данный механизм и вовсе будет бесполезным. Ведь возможность перемещения капсул появляется лишь после образования нужного вакуума, внутри механизма.

    Похожие статьи