• Как перехватывать трафик. Лучшие инструменты пен-тестера: сниферы и работа с пакетами

    06.01.2022

    Intercepter – это многофункциональный сетевой инструмент, который позволяет получить данные из трафика (пароли, сообщения в мессенджерах, переписки и т.д.) и реализовать различные MiTM-атаки.


    Интерфейс программы Intercepter
    Основной функционал

    • Перехват сообщений мессенджеров.
    • Перехват кукис файлов и паролей.
    • Перехват активности (страницы, файлы, данные).
    • Возможность подмены скачивания файлов, добавляя вредоносные файлы. Можно использовать совместно с другими утилитами.
    • Подмена сертификатов Https на Http.
    Режимы работы
    Messengers Mode – позволяет проверять переписку, которая была отправлена в незашифрованном виде. Применялась для перехвата сообщений в таких мессенджерах ICQ, AIM, JABBER сообщений.

    Ressurection Mode – восстановления полезных данных из трафика, из протоколов которые передают трафик в открытом виде. Когда жертва просматривает файлы, страницы, данные, можно частично или полностью их перехватывать. Дополнительно можно указать размер файлов, чтобы не загружать программу маленькими частями. Эту информацию можно использовать для анализа.

    Password Mode – режим для работы с куки файлами. Таким образом, можно получить доступы к посещаемым файлам жертвы.

    Scan mode – основной режим для тестирования. Для начала сканирования необходимо нажать правой кнопкой мыши Smart Scan. После сканирования в окне будут отображаться все участники сети, их операционная система и другие параметры.

    Дополнительно в этом режиме можно просканировать порты. Необходимо воспользоваться функцией Scan Ports. Конечно для этого есть и намного функциональные утилиты, но наличие этой функции – важный момент.

    Если в сети нас интересует целенаправленная атака, то после сканирования необходимо добавить целевой IP в Nat с помощью команды (Add to Nat). В другом окне можно будет провести другие атаки.

    Nat Mode. Основной режим, который позволяет проводить ряд атак по ARP. Это основное окно, которое позволяет проводить целенаправленные атаки.

    DHCP mode. Это режим, который позволяет поднять свой DHCP сервер для реализации атак DHCP по середине.

    Некоторые виды атак, которые можно проводить
    Подмена сайта

    Для подмена сайта у жертвы необходимо перейти в Target, после этого необходимо указать сайт и его подмену. Таким образом можно подменить достаточно много сайтов. Все зависит от того, насколько качественный будет фейк.

    Подмена сайта

    Пример для VK.com

    Выбираем MiTM атаку

    Изменяем правило для иньекции
    В результате жертва открывает фейковый сайт при запросе vk.com. И в режиме паролей должен быть логин и пароль жертвы:


    Чтобы провести целенаправленную атаку необходимо выбрать жертву из списку и добавить ее в таргет. Это можно сделать с помощью правой кнопкой мыши.


    Добавления MiTm атаки
    Теперь можно в режиме Ressurection Mode восстановить разные данные из трафика.


    Файлы и информация жертвы посредством MiTm атаки
    Подмена трафика



    Указание настроек
    После этого у жертвы будет меняться запрос "trust" на "loser".

    Дополнительно можно убить кукис-файлы, чтобы жертва вышла со всех аккаунтов и повторно авторизовалась. Это позволит перехватить логины и пароли.


    Уничтожение кукис файлов

    Как увидеть потенциального сниферра в сети с помощью Intercepter?

    С помощью опции Promisc Detection можно обнаружить устройство, которое ведет сканирование в локальной сети. После сканирование в графе status будет «Sniffer». Это первый способ, которые позволяет определить сканирование в локальной сети.


    Обнаружение Sniffer
    Устройство SDR HackRF


    HackRF
    SDR - это своеобразный радиоприемник, который позволяет работать с разными радиочастотными параметрами. Таким образом, можно перехватывать сигнал Wi-Fi, GSM, LTE и т.д.

    HackRF - это полноценное SDR-устройство за 300 долларов. Автор проекта Майкл Оссман разрабатывает успешные устройства в этом направлении. Ранее был разработан и успешно реализован Bluetooth-снифер Ubertooth. HackRF успешный проект, который собрал более 600 тысяч на Kickstarter. Уже было реализовано 500 таких устройств для бета-тестирования.

    HackRF работает в диапазоне частот от 30 МГц до 6 ГГц. Частота дискретизации составляет 20 МГц, что позволяет перехватывать сигналы Wi-FI и LTE сетей.

    Как обезопасить себя на локальном уровне?

    Для начала воспользуемся софтом SoftPerfect WiFi Guard. Есть портативная версия, которая занимает не более 4 мб. Она позволяет сканировать вашу сеть и отображать, какие устройства в ней отображены. В ней есть настройки, которые позволяют выбрать сетевую карту и максимальное количество сканируемых устройств. Дополнительно можно выставить интервал сканирования.


    Возможность добавления комментариев для пользователей


    Окно уведомления незнакомых девайсов после каждого заданного интервала сканирования

    Заключение
    Таким образом, мы рассмотрели на практике, как использовать программное обеспечение для перехвата данных внутри сети. Рассмотрели несколько конкретных атак, которые позволяют получить данные для входа, а также другую информацию. Дополнительно рассмотрели SoftPerfect WiFi Guard, которые позволяет на примитивном уровне защитить локальную сеть от прослушивания трафика.

    Оригинал: Network sniffing
    Автор: Paul Cobbaut
    Дата публикации: 12 марта 2015 г.
    Перевод: A. Панин
    Дата перевода: 1 апреля 2015 г.

    Глава 23. Перехват сетевого трафика

    Администратор сети должен уметь работать со сниффером, таким, как wireshark или tcpdump , для диагностирования проблем сети.

    Студенту также придется нередко прибегать к использованию сниффера для того, чтобы разобраться в принципах функционирования сетей. В данной главе описываются соответствующие методики перехвата сетевого трафика.

    23.1. Приложение wireshark

    23.1.1. Установка wireshark

    В данном примере приведена команда для установки приложения wireshark в дистрибутивах, использующих пакеты программного обеспечения с расширением.deb (включая Debian, Mint, Xubuntu и другие дистрибутивы).

    Root@debian8:~# Чтение списков пакетов Готово Построение дерева зависимостей Чтение информации о состоянии Готово... (вывод сокращен)

    В дистрибутивах, использующих пакеты программного обеспечения с расширением.rpm , таких, как CentOS, RHEL и Fedora, для установки приложения wireshark может использоваться утилита yum .

    # yum install wireshark Loaded plugins: fastestmirror Loading mirror speeds from cached hostfile ... (вывод сокращен)

    23.1.2. Выбор сетевого интерфейса

    При запуске приложения wireshark в первый раз вам придется выбрать сетевой интерфейс. Вы увидите диалог, который выглядит аналогично приведенному на иллюстрации ниже.

    Вероятна ситуация, при которой доступных сетевых интерфейсов попросту не окажется, ведь в некоторых дистрибутивах перехват сетевого трафика может осуществляться исключительно пользователем root. В этом случае вам придется запустить приложение wireshark от лица пользователя root с помощью команды sudo wireshark .

    Или же вы можете последовать общим рекомендациям и использовать утилиту tcpdump или какой-либо другой инструмент для перехвата трафика и записи данных в файл. Любые перехваченные данные могут быть проанализированы позднее с помощью приложения wireshark .

    23.1.3. Минимизация трафика

    В процессе перехвата сетевого трафика в течение очень коротких промежутков времени могут генерироваться тысячи пакетов. Очевидно, что такой объем данных затруднит анализ трафика. Попытайтесь выйти из этого положения, изолировав ваш сниффер в рамках сети. Предпочтительным вариантом является перехват трафика, проходящего через сетевой интерфейс изолированной виртуальной сети, находящейся под вашим полным контролем.

    Если вы изучаете инструменты для перехвата сетевого трафика в домашних условиях, для минимизации трафика будет полезно завершить работу всех приложений для работы с сетью, запущенных на вашем компьютере, а также отсоединить компьютер от других компьютеров и от таких устройств, как смартфоны и планшеты.

    И все же более важным инструментом для минимизации трафика являются фильтры, которые будут обсуждаться в следующем разделе.

    23.1.4. Перехват трафика, генерируемого утилитой ping

    Я запустил сниффер и захватил все пакеты, переданные по сети в результате исполнения трех команд ping (не имеет смысла выполнять эти команды от лица пользователя root):

    Root@debian7:~# ping -c2 ns1.paul.local PING ns1.paul.local (10.104.33.30) 56(84) bytes of data. 64 bytes from 10.104.33.30: icmp_req=1 ttl=64 time=0.010 ms 64 bytes from 10.104.33.30: icmp_req=2 ttl=64 time=0.023 ms --- ns1.paul.local ping statistics --- 2 packets transmitted, 2 received, 0% packet loss, time 1001ms rtt min/avg/max/mdev = 0.010/0.016/0.023/0.007 ms root@debian7:~# ping -c3 linux-training.be PING linux-training.be (188.93.155.87) 56(84) bytes of data. 64 bytes from antares.ginsys.net (188.93.155.87): icmp_req=1 ttl=56 time=15.6 ms 64 bytes from antares.ginsys.net (188.93.155.87): icmp_req=2 ttl=56 time=17.8 ms 64 bytes from antares.ginsys.net (188.93.155.87): icmp_req=3 ttl=56 time=14.7 ms --- linux-training.be ping statistics --- 3 packets transmitted, 3 received, 0% packet loss, time 2003ms rtt min/avg/max/mdev = 14.756/16.110/17.881/1.309 ms root@debian7:~# ping -c1 centos7.paul.local PING centos7.paul.local (10.104.33.31) 56(84) bytes of data. 64 bytes from 10.104.33.31: icmp_req=1 ttl=64 time=0.590 ms --- centos7.paul.local ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 0.590/0.590/0.590/0.000 ms

    В общей сложности из сети было захвачено более чем 200 пакетов. Все станет гораздо очевиднее в том случае, если введете строку icmp в поле фильтра и нажмете кнопку "Применить" ("Apply").

    23.1.5. Перехват трафика, генерируемого утилитой ping и клиентом dns

    Работая с той же сессией захвата данных, применим отличный фильтр. Мы хотим отслеживать трафик, относящийся как к протоколу dns , так и к протоколу icmp , поэтому нам придется ввести названия двух упомянутых протоколов в поле фильтра.

    Для захвата данных, относящихся к двум рассматриваемым протоколам, в поле фильтра должна быть введена строка "dns or icmp" . В случае ввода строки "dns and icmp" не будет выведено информации о каких-либо пакетах, так как не существует пакетов, относящихся к обоим упомянутыми протоколам.

    При рассмотрении приведенной выше иллюстрации можно заметить, что пакеты 25 и 26 имеют исходные и целевые IP-адреса 10.104.33.30. Это объясняется тем, что клиент DNS работает на том же компьютере, что и сервер DNS.

    Аналогичная ситуация наблюдается и в случае пакетов 31 и 32, ведь с помощью утилиты ping осуществляется отправка пакетов рабочей системе, на которой запущена данная утилита.

    23.1.6. Определенный IP-адрес

    В данном случае осуществляется фильтрация пакетов, относящихся к протоколу DNS и содержащих определенный IP-адрес. В качестве фильтра используется строка "ip.addr==10.104.33.30 and dns" . Директива and сообщает приложению о том, что следует выводить информацию о каждом пакете, соответствующем двум условиям.

    Пакет 93 содержит запрос DNS , направленный на получение записи типа A домена linux-training.be. Пакет 98 содержит ответ от сервера DNS . Как вы думаете, что происходило после отправки пакета 93 и до приема пакета 98? Попытайтесь ответить на этот вопрос перед чтением следующего раздела (при работе с различными системами всегда полезно пытаться предсказывать наступающие события и проверять корректность своих предсказаний).

    23.1.7. Фильтрация на основе фреймов

    Корректным термином, используемым для обозначения перехваченного пакета, является термин фрейм (из-за того, что мы осуществляем перехват пакетов на уровне 2 сетевой модели OSI). Таким образом, для вывода информации о пакетах с определенными номерами, следует использовать директиву frame.number в поле фильтра.

    23.1.8. Исследование содержимого пакетов

    Средняя панель окна сниффера может быть раскрыта. При выборе строки в рамках данной панели вы можете увидеть соответствующие значения байт в поле нижней панели.

    На иллюстрации ниже показана средняя панель окна сниффера с выбранным адресом моего ноутбука.

    Учтите, что описанная выше техника отлично работает при перехвате трафика, передаваемого через один сетевой интерфейс. Если же вы перехватываете трафик, к примеру, с помощью команды tcpdump -i any , вы столкнетесь с методом перехвата пакетов "Linux cooked capture" .

    23.1.9. Другие примеры фильтров

    Вы можете комбинировать два описания протоколов с помощью директивы логической операции or ("ИЛИ"), расположенной между ними. На иллюстрации ниже показан способ захвата исключительно пакетов, относящихся к протоколам ARP и BOOTP (или DHCP).

    А на следующей иллюстрации показан способ перехвата пакетов, относящихся к протоколу DNS и содержащих определенный IP-адрес.

    23.2. Утилита tcpdump

    В случае работы с интерфейсом командной строки системы перехват пакетов может осуществляться с помощью утилиты tcpdump . Ниже приведены некоторые примеры ее использования.

    При использовании команды tcpdump host $ip будет выводиться информация обо всем трафике, относящимся к определенному узлу (в данном случае с IP-адресом 192.168.1.38).

    Root@ubuntu910:~# tcpdump host 192.168.1.38 tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on eth0, link-type EN10MB (Ethernet), capture size 96 bytes

    Перехват трафика, относящегося исключительно к протоколу ssh (протокол TCP, порт 22), может осуществляться с помощью команды tcpdump tcp port $порт. Длина строк вывода урезана до 76 символов для более удобного чтения.

    Root@deb503:~# tcpdump tcp port 22 tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on eth1, link-type EN10MB (Ethernet), capture size 96 bytes 14:22:20.716313 IP deb503.local.37973 > rhel53.local.ssh: P 666050963:66605 14:22:20.719936 IP rhel53.local.ssh > deb503.local.37973: P 1:49(48) ack 48 14:22:20.720922 IP rhel53.local.ssh > deb503.local.37973: P 49:113(64) ack 14:22:20.721321 IP rhel53.local.ssh > deb503.local.37973: P 113:161(48) ack 14:22:20.721820 IP deb503.local.37973 > rhel53.local.ssh: . ack 161 win 200 14:22:20.722492 IP rhel53.local.ssh > deb503.local.37973: P 161:225(64) ack 14:22:20.760602 IP deb503.local.37973 > rhel53.local.ssh: . ack 225 win 200 14:22:23.108106 IP deb503.local.54424 > ubuntu910.local.ssh: P 467252637:46 14:22:23.116804 IP ubuntu910.local.ssh > deb503.local.54424: P 1:81(80) ack 14:22:23.116844 IP deb503.local.54424 > ubuntu910.local.ssh: . ack 81 win 2 ^C 10 packets captured 10 packets received by filter 0 packets dropped by kernel

    Та же операция, но с записью захваченных данных в файл, может осуществляться с помощью команды tcpdump -w $имя_файла.

    Root@ubuntu910:~# tcpdump -w sshdump.tcpdump tcp port 22 tcpdump: listening on eth0, link-type EN10MB (Ethernet), capture size 96 bytes ^C 17 packets captured 17 packets received by filter 0 packets dropped by kernel

    С помощью команды tcpdump -r $имя_файла может быть выведено содержимое файла, созданного в предыдущем примере.

    Root@ubuntu910:~# tcpdump -r sshdump.tcpdump

    Множество других примеров использования рассматриваемой утилиты может быть найдено на странице руководства man tcpdump .

    23.3. Практическое задание: перехват сетевого трафика

    23.4. Корректная процедура выполнения практического задания: перехват сетевого трафика

    1. Установите приложение wireshark в вашу систему (работающую не в виртуальной машине).

    В дистрибутивах Debain/Ubuntu: aptitude install wireshark

    В дистрибутивах Red Hat/Mandriva/Fedora: yum install wireshark

    2. Используйте утилиту ping генерации трафика между вашим и каким-либо другим компьютером.

    Ping $ip_адрес

    3. Начните перехват сетевого трафика.

    (sudo) wireshark

    Выберите сетевой интерфейс (вероятно, eth0)

    4. С помощью фильтра осуществите вывод информации исключительно о тех пакетах, которые содержат ответы на запросы от утилиты ping.

    Введите "icmp" (без кавычек) в поле фильтра и нажмите кнопку "Применить" ("Apply").

    5. Теперь передайте утилите ping имя домена (такое, как www.linux-training.be) и попытайтесь перехватить пакеты с запросом и ответом DNS. Какой DNS-сервер был использован? Был ли использован протокол TCP или UDP для передачи запроса и ответа?

    В первую очередь запустите сниффер.

    Введите "dns" в поле фильтра и нажмите кнопку "Применить" ("Apply").

    Root@ubuntu910:~# ping www.linux-training.be PING www.linux-training.be (88.151.243.8) 56(84) bytes of data. 64 bytes from fosfor.openminds.be (88.151.243.8): icmp_seq=1 ttl=58 time=14.9 ms 64 bytes from fosfor.openminds.be (88.151.243.8): icmp_seq=2 ttl=58 time=16.0 ms ^C --- www.linux-training.be ping statistics --- 2 packets transmitted, 2 received, 0% packet loss, time 1002ms rtt min/avg/max/mdev = 14.984/15.539/16.095/0.569 ms

    Окно приложения wireshark должно выглядеть аналогичным образом.

    На основе информация из окна приложения wireshark можно сделать вывод о том, что запрос DNS передавался с помощью пакета UDP, после чего несложно дать ответы на поставленные вопросы.

    6. Найдите закрытый вебсайт, имеющий форму запроса пароля. Попытайтесь войти на него, использовав имя пользователя "paul" и пароль "hunter2" в процессе работы сниффера. Теперь попытайтесь найти введенные имя пользователя и пароль в захваченных с помощью сниффера данных.

    Привет, Мир! Сейчас расскажем об одном полезном методе траблшутинга и поиска проблем на роутерах MikroTik . Суть данного метода заключается в том, чтобы отлавливать (“сниффить”) пакеты, проходящие через определённые интерфейсы нашего роутера и анализировать их сразу же при помощи Wireshark .

    Prerequisites

    Итак, для того, чтобы воспользоваться данным методом нам понадобится:

    • Роутер MikroTik (в нашем случае использовался RB951Ui-2HnD с версией прошивки RouterOS 6.40.2)
    • Программа Wireshark (в нашем случае версия 2.4.1)
    • Компьютер или сервер, находящийся в одной сети с роутером с запущенным Wireshark’ом

    Настройка

    Первым делом открываем Wireshark, выбираем интерфейс, на котором хотим “сниффить” (в нашем случае это Ethernet, то есть интерфейс, с помощью которого компьютер подключается к роутеру) и устанавливаем следующий фильтр - udp port 37008 . Как показано на рисунке:

    Понятно, что если мы запустим захват пакетов без этого фильтра, то нам просто вывалится весь трафик, который проходит через этот интерфейс, а мы этого не хотим.

    Что же это за фильтр такой и что за порт - 37008 ? Дело в том, что MikroTik шлёт UDP дэйтаграммы, то есть весь перехваченный трафик, именно на этот порт streaming server’а , а в качестве этого стриминг сервера, как вы могли догадаться, у нас выступает наш компьютер с запущенным Wireshark’ом. Эти пакеты инкапсулируются по протоколу TZSP (TaZmen Sniffer Protocol), который используется для переноса в себе других протоколов.

    Итак, запускаем перехват пакетов на определённом интерфейсе с фильтром udp port 37008 и видим, что ничего не происходит и пакетов нет.


    А теперь самое интересное – подключаемся к MikroTik’у через WinBox, переходим в раздел Tools далее Packet Sniffer и видим следующее окно с настройками:


    На вкладке General можем оставить всё по умолчанию, переходим на вкладку Streaming :


    Ставим галочку в Streaming Enabled , в поле Server указываем IP адрес нашего компьютера, на котором запустили Wireshark и ставим галочку на Filter Stream , чтобы активировать фильтр, который будет настраиваться на следующей вкладке - Filter

    На данной вкладке мы можем отфильтровать интересующий нас трафик. Например, у нас в сети есть IP-АТС Asterisk и мы хотим посмотреть, какие пакеты он получает и отправляет через роутер MikroTik. Так, например, можно отследить коммуникацию IP-АТС с сервером провайдера VoIP услуг.

    Итак, выбираем интерфейсы, на которых хотим отлавливать пакеты (в нашем случае это bridge), далее отфильтруем трафик по определённому IP-адресу в поле IP Address (Наша IP-АТС), укажем протокол - 17 (udp) и порт 5060 (sip) . Направление укажем любое - any и Filter Operation = or , то есть логика работы данного фильтра – “или”. Если вы хотите отлавливать пакеты только по жёстко определённому фильтру, то логику следует указать and , то есть – совпадение всех условий фильтра.


    Отлично, теперь отправляемся в Wireshark и видим, что он нам уже наловил нужных пакетов в соответствии с правилами фильтра.


    В нашем случае – это коммуникация IP-АТС Asterisk с сервером провайдера VoIP услуг, запрос на регистрацию и подтверждение с обратной стороны. Обратите внимание, что тип инкапсуляции - TZSP , однако, Wireshark смог правильно деинкапсулировать эти пакеты и отобразить нам пакеты SIP .

    Полезна ли Вам эта статья?

    Пожалуйста, расскажите почему?

    Нам жаль, что статья не была полезна для вас:(Пожалуйста, если не затруднит, укажите по какой причине? Мы будем очень благодарны за подробный ответ. Спасибо, что помогаете нам стать лучше!

    В настоящее время также очень популярными стали публичные сети Wi-Fi. Они есть в ресторанах, спортивных залах, в торговых центрах, в метро, в отелях, в частных больницах и поликлиниках, в апартаментах и кондоминиумах — их можно найти практически везде, где собирается довольно много людей.

    У этих сетей есть особенность — часто это открытые сети Wi-Fi для подключения к которым не требуется пароль. Есть ли какие-то дополнительные правила безопасности для работы с такими сетями?

    Да, при использовании открытой Wi-Fi сетью нужно хорошо понимать, что:

    • все данные передаются радиоволнами, то есть в отличие от провода, к которому далеко не каждый может получить доступ, радиоволны могут перехватываться кем угодно, кто находится в диапазоне досягаемости
    • в открытых сетях данные не зашифрованы

    С первым пунктом, думаю, всё понятно: если кто-то с компьютером и Wi-Fi картой находится достаточно близкой, то он может захватывать и сохранять весь трафик, передаваемый между беспроводной Точкой Доступа и всеми её клиентами.

    Что касается второго пункта, то нужно пояснить по поводу шифрования передаваемых данных. Например, если вы открываете какой-либо сайт, который использует протокол HTTPS (то есть безопасный протокол), например сайт , то передаваемые данные на этот сайт и с этого сайта к вам зашифрованы. Если вы открываете сайт работающий по протоколу HTTP, то все передаваемые данные: какие страницы вы посетили, какие комментарии оставили, какие кукиз получил ваш веб-браузер — эти данные передаются в незашифрованном виде. Так вот, если вы подключены к Wi-Fi Точке Доступа которая требует ввод пароля, то передаваемый трафик шифруется ещё раз. То есть даже если вы открываете сайт на протоколе HTTPS, то передаваемый трафик шифруется два раза (первый раз при передаче от веб-браузера до веб-сервера и в обратном направлении, второй раз при передаче от вашего устройства и до Точки Доступа, а также в обратном направлении). А если вы открываете сайт на протоколе HTTP, то передаваемый трафик шифруется только один раз (только при передаче от вашего устройства до Точки Доступа и обратно).

    Но открытые точки доступа не шифруют трафик. Из этого следует: если вы используете открытую точку доступа и открываете сайт, работающий на протоколе HTTP, значит ваши данные передаются в открытом виде и кто угодно рядом с вами может их захватить и сохранить. Если вы открываете сайт на протоколе HTTPS, то эти данные зашифрованы, тем не менее, всё равно видно, какие именно сайты вы открывали (хотя не видно, какие именно страницы и что вы вводили, например, какие оставили комментарии).

    Итак: нужно помнить, что открытые беспроводные сети подвержены перехвату информации.

    Перехват трафика в открытых Wi-Fi сетях

    Для успешной атаке нужен компьютер на Linux (например, с Kali Linux или с BlackArch), а также Wi-Fi карта из .

    Начнём с того, что посмотрим имена беспроводных интерфейсов:

    Как можно увидеть, у меня несколько беспроводных интерфейсов, я буду использовать wlp0s20f0u2 .

    Переводим беспроводной интерфейс в режим монитора:

    Sudo ip link set ИНТЕРФЕЙС down sudo iw ИНТЕРФЕЙС set monitor control sudo ip link set ИНТЕРФЕЙС up

    В предыдущих командах вместо ИНТЕРФЕЙС нужно вписать то имя, которое беспроводной интерфейс имеет в вашей системе. Например, для wlp0s20f0u2 команды выглядят так:

    Sudo ip link set wlp0s20f0u2 down sudo iw wlp0s20f0u2 set monitor control sudo ip link set wlp0s20f0u2 up

    Откройте файл с захваченными данными в Wireshark.

    Для выделения разных данных нам понадобятся фильтры Wireshark. Здесь я покажу пример использования только некоторых фильтров, рекомендуется изучить большую подборку полезных фильтров Wireshark .

    Для оценки качества захвата, можно начать с фильтров, которые выводят результаты анализа TCP протокола.

    Например:

    Tcp.analysis.duplicate_ack_num == 1

    Этот фильтр выводит информацию о фреймах с флагом ACK, которые являются дублями. Большое количество таких фреймов может говорить о проблемах связи между Клиентом и Точкой Доступа.

    Фильтр показа фреймов для которых не захвачен предыдущий сегмент:

    Tcp.analysis.ack_lost_segment

    Это нормально в начале захвата данных — поскольку информация перехватывается не с самого начала. Но если эта ошибка часто возникает в дальнейшем, значит вы находитесь слишком далеко от Точки Доступа или Клиентов и вы не захватывает часть данных, которые они передают.

    Для показа фреймов, которые являются ретрансмиссией (отправляются повторно):

    Tcp.analysis.retransmission

    Большое количество таких фреймов может говорить о том, что между Клиентом и ТД плохая связь и им часто приходится отправлять повторно одни и те же данные.

    С помощью фильтра

    Можно увидеть ARP трафик — с его помощью удобно анализировать, сколько всего устройств в данный момент подключено к локальной сети, какие у них IP адреса и какие MAC адреса. .

    С помощью фильтра

    можно увидеть все отправленные DNS запросы.

    Благодаря этим запросам можно узнать, какие сайты посещали пользователи (даже если эти сайты используют HTTPS!), а также к каким онлайн сервисам были сделаны запросы.

    Например, на скриншоте можно увидеть адреса онлайн кинотеатра Netflix, Facebook, различных сервисов Google.

    Для фильтрации HTTP трафика фильтр:

    Здесь можно узнать множество интересной информации. Например, можно увидеть запросы к сервисам и передаваемые данные, в том числе API ключи, идентификаторы устройств и прочее:

    Можно увидеть посещённые URL адреса со всеми передаваемыми параметрами:

    Видны загруженные и открытые в Интернете файлы:

    Вы можете сохранить любой переданный файл. Для этого выделите мышкой пакет, который его содержит (1), затем в средней панели, которая содержит подробную информацию, пролистните в самый низ, чтобы найти поле с данными и кликните на него правой кнопкой мыши, чтобы вызвать контекстное меню (2), в контекстном меню выберите Export Selected Packet Bytes (3) — Экспортировать байты выбранного пакета:

    Введите имя файла, выберите расположение и сохраните его.

    Кто-то обновляет Windows:

    Также видны установленные пользователю кукиз или переданные им кукиз:

    С помощью фильтра

    Http.cookie

    можно увидеть HTTP запросы, в которых передавались кукиз.

    А с помощью фильтра

    Http.set_cookie

    можно увидеть запросы, в которых сервер установил кукиз в браузер пользователя.

    Соседи скачивают странные торренты:

    Переданные методом POST данные также видны:

    Для поиска любых переданных изображений:

    Http.content_type contains "image"

    Для поиска определённых видов изображений:

    Http.content_type contains "gif" http.content_type contains "jpeg" http.content_type contains "png"

    Для поиска файлов определённого типа:

    Http.content_type contains "text" http.content_type contains "xml" http.content_type contains "html" http.content_type contains "json" http.content_type contains "javascript" http.content_type contains "x-www-form-urlencode" http.content_type contains "compressed" http.content_type contains "application"

    Поиска в Wireshark запросов на получения файлов определённого типа. Например, для поиска переданных ZIP архивов:

    Http.request.uri contains "zip"

    Вместо http.request.uri для большей точности можно использовать фильтры http.request.uri.path или http.request.uri.query , например, для поиска запросов на скачивание файлов JPG (ссылки на картинки):

    Http.request.uri.path contains "jpg"

    Фильтр, который показывает только данные, переданные методом POST:

    Http.request.method == "POST"

    Фильтр, который показывает только данные, переданные методом GET:

    Http.request.method == "GET"

    Поиск запросов к определённому сайту (хосту):

    Http.host == ""

    Поиск запросов к определённому сайту по части имени:

    Http.host contains "здесь.частичное.имя"

    Заключение

    Сейчас количество приложений и сайтов, которые не используют шифрование, стремительно уменьшается. Поэтому опасность такого перехвата с каждым годом снижается. Тем не менее она есть.

    Даже сайты, который используют HTTPS, могут непроизвольно выдавать данные. Например:

    Видно, что от пользователя данные на booking.com передаются в незашифрованном виде, поэтому можно перехватить эту ссылку.

    Приложение iPhone постоянно загружает какие-то (аудио?) файлы не используя безопасное соединение:

    Популярная (в некоторых регионах) qq.com или не использует шифрование, либо использует свой собственный алгоритм:

    Гарантированной защитой от такого перехвата является использование доверенного VPN сервиса. Надёжным VPN сервисом можно считать тот, который вы настроили сами, либо VPN вашей корпоративной сети.


    В этом уроке описаны технологии сетевого хакинга, основанные на перехвате сетевых пакетов. Хакеры используют такие технологии для прослушивания сетевого трафика с целью хищения ценной информации, для организации перехвата данных с целью атаки «человек посредине», для перехвата TCP-соединений, позволяющих, скажем, подменять данные, и выполнения других, не менее интересных действий. К сожалению, большая часть этих атак на практике реализована только для сетей Unix, для которых хакеры могут использовать как специальные утилиты, так и системные средства Unix. Сети Windows, по всей видимости, обойдены вниманием хакеров, и мы вынуждены ограничиться при описании инструментов перехвата данных программами-сниферами, предназначенными для тривиального прослушивания сетевых пакетов. Тем не менее, не следует пренебрегать хотя бы теоретическим описанием таких атак, особенно антихакерам, поскольку знание применяемых технологий хакинга поможет предотвратить многие неприятности.

    Сетевой снифинг

    Для снифинга сетей Ethernet обычно используются сетевые карты, переведенные в режим прослушивания. Прослушивание сети Ethernet требует подключения компьютера с запущенной программой-снифером к сегменту сети, после чего хакеру становится доступным весь сетевой трафик, отправляемый и получаемый компьютерами в данном сетевом сегменте. Еще проще выполнить перехват трафика радиосетей, использующих беспроводные сетевые посредники, - в этом случае не требуется даже искать место для подключения к кабелю. Или же злоумышленник может подключиться к телефонной линии, связывающей компьютер с сервером Интернета, найдя для этого удобное место (телефонные линии обычно проложены в подвалах и прочих малопосещаемых местах без всякой защиты).

    Для демонстрации технологии снифинга мы применим весьма популярную программу-снифер SpyNet , которую можно найти на многих Web-сайтах. Официальный сайт программы SpyNet находится по адресу http://members.xoom.com/layrentiu2/ , на котором можно загрузить демо-версию программы.

    Программа SpyNet состоит из двух компонентов - CaptureNet и PipeNet . Программа CaptureNet позволяет перехватывать пакеты, передаваемые по сети Ethernet на сетевом уровне, т.е. в виде кадров Ethernet. Программа PipeNet позволяет собирать кадры Ethernet в пакеты уровня приложений, восстанавливая, например, сообщения электронной почты, сообщения протокола HTTP (обмен информацией с Web-сервером) и выполнять другие функции.

    К сожалению, в демо-версии SpyNet возможности PipeNet ограничены демонстрационным примером сборки пакета HTTP, так что мы не сможем продемонстрировать работу SpyNet в полном объеме. Однако мы продемонстрируем возможности сетевого снифинга SpyNet на примере нашей экспериментальной сети, передав текстовый файл с хоста Sword-2000 на хост Alex-З с помощью обычного проводника Windows. Одновременно на компьютере А1ех-1 мы запустим программу CaptureNet , которая перехватит переданные пакеты и позволит прочитать содержимое переданного файла в кадрах Ethernet. На Рис. 1 представлен текст секретного сообщения в файле secret.txt ; мы постараемся найти этот текст в перехваченных кадрах Ethernet.

    Рис. 1. Текст секретного сообщения в окне Notepad

    Для перехвата кадров Ethernet выполните такие действия.

    На компьютере Alex-З запустите программу CaptureNet . В отобразившемся рабочем окне программы выберите команду меню Capture * Start (Захват * Запуск) и запустите процесс перехвата сетевых кадров.

    Средствами проводника Windows скопируйте файл security.txt с компьютера Sword-2000 на А1ех-3 .

    После передачи файла secret.txt выберите команду меню Capture * Stop (Захват * Стоп) и остановите процесс перехвата.

    Перехваченные кадры Ethernet отобразятся в правой части рабочего окна программы CaptureNet (Рис. 2), причем каждая строка в верхнем списке представляет кадр Ethernet, а под списком отображается содержимое выбранного кадра.

    Рис. 2. Кадр Ethernet содержит текст секретного сообщения

    Просмотрев список перехваченных кадров, мы без труда найдем тот из них, который содержит переданный нами текст This is a very big secret (Это очень большой секрет).

    Подчеркнем, что это - самый простой пример, когда записывался весь перехваченный сетевой трафик. Программа CaptureNet позволяет перехватывать пакеты, пересылаемые по определенным протоколам и на определенные порты хостов, выбирать сообщения с определенным содержимым и накапливать перехваченные данные в файле. Техника выполнения таких действий несложна, и ее можно освоить по справочной системе программы SpyNet .

    Кроме примитивного прослушивания сети, хакерам доступны более изощренные средства перехвата данных. Ниже приведен краткий обзор таких методов, правда, в теоретическом аспекте. Причина в том, что для сетей Windows практическая реализация атак перехвата данных крайне ограничена, и набор надежных утилит для атак перехвата довольно скуден.

    Методы перехвата сетевого трафика

    Прослушиванце сети с помощью программ сетевых анализаторов, подобных приведенной выше CaptureNet , является первым, самым простым способом перехвата данных. Кроме SpyNet для снифинга сетей используется множество инструментов, изначально разрабатываемых для целей анализа сетевой активности, диагностирования сетей, отбора трафика по указанным критериям и других задач сетевого администрирования. В качестве примера такой программы можно назвать tcpdump (http://www.tcpdump.org ), которая позволяет записывать сетевой трафик в специальный журнал для последующего анализа.

    Для защиты от прослушивания сети применяются специальные программы, например, AntiSniff (http://www.securitysoftwaretech.com/antisniff ), которые способны выявлять в сети компьютеры, занятые прослушиванием сетевого трафика. Программы-антисниферы для решения своих задач используют особый признак наличия в сети прослушивающих устройств - сетевая плата компьютера-снифера должна находиться в специальном режиме прослушивания. Находясь в режиме прослушивания, сетевые компьютеры особенным образом реагируют на IР-дейтаграммы, посылаемые в адрес тестируемого хоста. Например, прослушивающие хосты, как правило, обрабатывают весь поступающий трафик, не ограничиваясь только посланными на адрес хоста дейтаграммами. Имеются и другие признаки, указывающие на подозрительное поведение хоста, которые способна распознать программа AntiSniff .

    Несомненно, прослушивание очень полезно с точки зрения злоумышленника, поскольку позволяет получить множество полезной информации - передаваемые по сети пароли, адреса компьютеров сети, конфиденциальные данные, письма и прочее. Однако простое прослушивание не позволяет хакеру вмешиваться в сетевое взаимодействие между двумя хостами с целью модификации и искажения данных. Для решения такой задачи требуется более сложная технология.

    Ложные запросы ARP

    Чтобы перехватить и замкнуть на себя процесс сетевого взаимодействия между двумя хостами А и В злоумышленник может подменить IР-адреса взаимодействующих хостов своим IP-адресом, направив хостам А и В фальсифицированные сообщения ARP (Address Resolution Protocol - Протокол разрешения адресов). С протоколом ARP можно познакомиться в Приложении D, где описана процедура разрешения (преобразования) IP-адреса хоста в адрес машины (МАС-адрес), зашитый в сетевую плату хоста. Посмотрим, как хакер может воспользоваться протоколом ARP для выполнения перехвата сетевого взаимодействия между хостами А и В.

    Для перехвата сетевого трафика между хостами А и В хакер навязывает этим хостам свой IP-адрес, чтобы А и В использовали этот фальсифицированный IP-адрес при обмене сообщениями. Для навязывания своего IР-адреса хакер выполняет следующие операции.

    Злоумышленник определяет МАС-адреса хостов А и В, например, с помощью команды nbtstat из пакета W2RK .

    Злоумышленник отправляет на выявленные МАС-адреса хостов А и В сообщения, представляющие собой фальсифицированные ARP-ответы на запросы разрешения IP-адресов хостов в МАС-адреса компьютеров. Хосту А сообщается, что IР-адресу хоста В соответствует МАС-адрес компьютера злоумышленника; хосту В сообщается, что IP-адресу хоста А также соответствует МАС-адрес компьютера злоумышленника.

    Хосты А и В заносят полученные МАС-адреса в свои кэши ARP и далее используют их для отправки сообщений друг другу. Поскольку IР-адресам А и В соответствует МАС-адрес компьютера злоумышленника, хосты А и В, ничего не подозревая, общаются через посредника, способного делать с их посланиями что угодно.

    Для защиты от таких атак сетевые администраторы должны поддерживать базу данных с таблицей соответствия МАС-адресов и IP-адресов своих сетевых компьютеров. Далее, с помощью специального программного обеспечения, например, утилиты arpwatch (ftp://ftp.ee.lbl.gov/arpwatch-2.lab.tar.gz ) можно периодически обследовать сеть и выявлять несоответствия.

    В сетях UNIX такого рода атаку ложными запросами ARP можно реализовать с помощью системных утилит отслеживания и управления сетевым трафиком, например, arpredirect . К сожалению, в сетях Windows 2000/XP такие надежные утилиты, по-видимому, не реализованы. Например, на сайте NTsecurity (http://www.ntsecurity.nu ) можно загрузить утилиту GrabitAII , представленную как средство для перенаправления трафика между сетевыми хостами. Однако элементарная проверка работоспособности утилиты GrabitAII показывает, что до полного успеха в реализации ее функций еще далеко.

    Ложная маршрутизация

    Чтобы перехватить сетевой трафик, злоумышленник может подменить реальный IP-адрес сетевого маршрутизатора своим IP-адресом, выполнив это, например, с помощью фальсифицированных ICMP-сообщений Redirect. Полученное сообщение Redirect хост А должен, согласно документу RFC-1122, воспринять как ответ на дейтаграмму, посланную другому хосту, например, В. Свои действия на сообщение Redirect хост А определяет, исходя из содержимого полученного сообщения Redirect, и если в Redirect задать перенаправление дейтаграмм из А в В по новому маршруту, именно это хост А и сделает.

    Для выполнения ложной маршрутизации злоумышленник должен знать некоторые подробности об организации локальной сети, в которой находится хост А, в частности, IP-адрес маршрутизатора, через который отправляется трафик из хоста А в В. Зная это, злоумышленник сформирует IP-дейтаграмму, в которой IP-адрес отправителя определен как IP-адрес маршрутизатора, а получателем указан хост А. Также в дейтаграмму включается сообщение ICMP Redirect с полем адреса нового маршрутизатора, установленным как IP-адрес компьютера злоумышленника. Получив такое сообщение, хост А будет отправлять все сообщения по IP-адресу компьютера злоумышленника.

    Для защиты от такой атаки следует отключить (например, с помощью брандмауэра) на хосте А обработку сообщений ICMP Redirect, а выявить IP-адрес компьютера злоумышленника может команда tracert (в Unix это команда tracerout). Эти утилиты способны найти появившийся в локальной сети дополнительный, непредусмотренный при инсталляции, маршрут, если конечно администратор сети проявит бдительность.

    Приведенное выше примеры перехватов (которыми возможности злоумышленников далеко не ограничиваются) убеждают в необходимости защиты данных, передаваемых по сети, если в данных содержится конфиденциальная информация. Единственным методом защиты от перехватов сетевого трафика является использование программ, реализующих криптографические алгоритмы и протоколы шифрования, и позволяющих предотвратить раскрытие и подмену секретной информации. Для решения таких задач криптография предоставляет средства для шифрования, подписи и проверки подлинности передаваемых по защищенным протоколам сообщений

    Практическую реализацию всех описанных в Главе 4 криптографических методов защиты обмена информацией предоставляют сети VPN (Virtual Private Network - Виртуальные частные сети). Краткий обзор принципов и методов криптографической защиты можно найти в Приложении Е, а в приводится подробное описание средств криптографической защиты, предоставляемых приложением PGP Desktop Security (http://www.pgp.com ).

    Перехват TCP-соединения

    Наиболее изощренной атакой перехвата сетевого трафика следует считать захват TCP-соединения (TCP hijacking), когда хакер путем генерации и отсылки на атакуемых хост TCP-пакетов прерывает текущий сеанс связи с хостом. Далее, пользуясь возможностями протокола TCP по восстановлению прерванного TCP-соединения, хакер перехватывает прерванный сеанс связи и продолжает его вместо отключенного клиента.

    Для выполнения атак перехвата TCP-соединения создано несколько эффективных утилит, однако все они реализованы для платформы Unix, и на сайтах Web эти утилиты представлены только в виде исходных кодов. Таким образом, нам, как убежденным практикам в благородном деле хакинга, от атак методом перехвата TCP-соединения проку не много. (Любители разбираться в чужом программном коде могут обратиться к сайту http://www.cri.cz/~kra/index.html , где можно загрузить исходный код известной утилиты перехвата TCP-соединения Hunt от Павла Крауза (Pavel Krauz)).

    Несмотря на отсутствие практических инструментов, мы не можем обойти стороной такую интересную тему, как перехват TCP-соединений, и остановимся на некоторых аспектах таких атак. Некоторые сведения о структуре TCP-пакета и порядке установления TCP-соединений приведены в Приложении D этой книги, здесь же основное внимание мы уделим такому вопросу - что же именно позволяет хакерам выполнять атаки перехвата TCP-соединений? Рассмотрим эту тему подробнее, опираясь, в основном, на обсуждение в и .

    Протокол TCP (Transmission Control Protocol - Протокол управления передачей) является одним из базовых протоколов транспортного уровня OSI, позволяющим устанавливать логические соединения по виртуальному каналу связи. По этому каналу передаются и принимаются пакеты с регистрацией их последовательности, осуществляется управление потоком пакетов, организовывается повторная передача искаженных пакетов, а в конце сеанса канал связи разрывается. Протокол TCP является единственным базовым протоколом из семейства TCP/IP, имеющим продвинутую систему идентификации сообщений и соединения.

    Для идентификации TCP-пакета в TCP-заголовке существуют два 32-разрядных идентификатора, которые также играют роль счетчика пакетов, называемых порядковым номером и номером подтверждения. Также нас будет интересовать еще одно поле TCP-пакета, называемое управляющими битами. Это поле размером 6 бит включает следующие управляющие биты (в порядке слева направо):

    URG - флаг срочности;

    АСК - флаг подтверждения;

    PSH - флаг переноса;

    RST - флаг переустановки соединения;

    SYN - флаг синхронизации;

    FIN - флаг завершения соединения.

    Рассмотрим порядок создания TCP-соединения.

    1. Если хосту А необходимо создать TCP-соединение с хостом В, то хост А посылает хосту В следующее сообщение:

    А -> В: SYN, ISSa

    Это означает, что в передаваемом хостом А сообщении установлен флаг SYN (Synchronize sequence number - Номер последовательности синхронизации), а в поле порядкового номера установлено начальное 32-битное значение ISSa (Initial Sequence Number - Начальный номер последовательности).

    2. В ответ на полученный от хоста А запрос хост В отвечает сообщением, в котором установлен бит SYN и установлен бит АСК. В поле порядкового номера хост В устанавливает свое начальное значение счетчика - ISSb; поле номера подтверждения будет при этом содержать значение ISSa, полученное в первом пакете от хоста А, увеличенное на единицу. Таким образом, хост В отвечает таким сообщением:

    В -> A: SYN, АСК, ISSb, ACK(ISSa+1)

    3. Наконец, хост А посылает сообщение хосту В, в котором: установлен бит АСК ; поле порядкового номера содержит значение ISSa + 1 ; поле номера подтверждения содержит значение ISSb + 1 . После этого TCP-соединение между хостами А и В считается установленным:

    А -> В: АСК, ISSa+1, ACK(ISSb+1)

    4. Теперь хост А может посылать пакеты с данными на хост В по только что созданному виртуальному TCP-каналу:

    А -> В: АСК, ISSa+1, ACK(ISSb+1); DATA

    Здесь DATA обозначает данные.

    Из рассмотренного выше алгоритма создания TCP-соединения видно, что единственными идентификаторами TCP-абонентов и TCP-соединения являются два 32-битных параметра порядкового номера и номера подтверждения - ISSa и ISSb . Следовательно, если хакеру удастся узнать текущие значения полей ISSa и ISSb , то ему ничто не помешает сформировать фальсифицированный TCP-пакет. Это означает, что хакеру достаточно подобрать текущие значения параметров ISSa и ISSb пакета TCP для данного TCP-соединения, послать пакет с любого хоста Интернета от имени клиента данного TCP-подключения, и данный пакет будет воспринят как верный!

    Опасность такой подмены TCP-пакетов важна и потому, что высокоуровневые протоколы FTP и TELNET реализованы на базе протокола TCP, и идентификация клиентов FTP и TELNET-пакетов целиком основана на протоколе TCP.

    К тому же, поскольку протоколы FTP и TELNET не проверяют IР-адреса отправителей сообщений, то после получения фальсифицированного пакета серверы FTP или TELNET отправят ответное сообщение по указанному в ложном пакете IP-адресу хакерского хоста. После этого хакерский хост начнет работу с сервером FTP или TELNET со своего IР-адреса, но с правами легально подключившегося пользователя, который, в свою очередь, потеряет связь с сервером из-за рассогласования счетчиков.

    Таким образом, для осуществления описанной выше атаки необходимым и достаточным условием является знание двух текущих 32-битных параметров ISSa и ISSb , идентифицирующих TCP-соединение. Рассмотрим возможные способы их получения. В случае, когда хакерский хост подключен к атакуемому сетевому сегменту, задача получения значений ISSa и ISSb является тривиальной и решается путем анализа сетевого трафика. Следовательно, надо четко понимать, что протокол TCP позволяет в принципе защитить соединение только в случае невозможности перехвата атакующим сообщений, передаваемых по данному соединению, то есть только в случае, когда хакерский хост подключен к сетевому сегменту, отличному от сегмента абонента TCP-соединения.

    Поэтому наибольший интерес для хакера представляют межсегментные атаки, когда атакующий и его цель находятся в разных сегментах сети. В этом случае задача получения значений ISSa и ISSb не является тривиальной. Для решения данной проблемы ныне придумано только два способа.

    Математическое предсказание начального значения параметров TCP-соединения экстраполяцией предыдущих значений ISSa и ISSb .

    Использование уязвимостей по идентификации абонентов TCP-соединения на rsh-серверах Unix.

    Первая задача решается путем углубленных исследований реализации протокола TCP в различных операционных системах и ныне имеет чисто теоретическое значение. Вторая проблема решается с использованием уязвимостей системы Unix по идентификации доверенных хостов. (Доверенным по отношению к данному хосту А называется сетевой хост В , пользователь которого может подключиться к хосту А без аутентификации с помощью r-службы хоста А ). Манипулируя параметрами TCP-пакетов, хакер может попытаться выдать себя за доверенный хост и перехватить TCP-соединение с атакуемым хостом.

    Все это очень интересно, но практические результаты такого рода изысканий еще не видны. Поэтому всем желающим углубиться в эту тему советуем обратиться к книге , откуда, в основном, были взяты изложенные выше сведения.

    Заключение

    Перехват сетевых данных представляет собой наиболее эффективный метод сетевого хакинга, позволяющий хакеру получить практически всю информацию, циркулирующую по сети. Наибольшее практическое развитие получили средства снифинга, т.е. прослушивания сетей; однако нельзя обойти вниманием и методы перехвата сетевых данных, выполняемые с помощью вмешательства в нормальное функционирование сети с целью перенаправления трафика на хакерский хост, в особенности методы перехвата TCP-соединений. Однако на практике последние упомянутые методы пока еще не получили достаточного развития и нуждаются в совершенствовании.

    Антихакер должен знать, что единственным спасением от перехвата данных является их шифрование, т.е. криптографические методы защиты. Посылая по сети сообщение, следует заранее предполагать, что кабельная система сети абсолютно уязвима, и любой подключившийся к сети хакер сможет выловить из нее все передаваемые секретные сообщения. Имеются две технологии решения этой задачи - создание сети VPN и шифрование самих сообщений. Все эти задачи очень просто решить с помощью пакета программ PGP Desktop Security (ее описание можно найти, например, в ).

    Похожие статьи